
AD-A239 712 *ATION PAGE FO~pW . 70-08
II il f 111111 ii l l ist response. meu f t e tot rswteWg inspiis seaching existing m~a sotncus ghainem amd maffirusig " m -

liiiIII lul I~JjIJJfl~ 1111IIJan evtniate o(an 00Wr amPe ot thi ooection of "ormlatb hda*g - ggq tb fotr~dxr M a ,ru to Wasugo
Heae 1111 Iimiiui ii mli 1111 lii ii aPon Davis Hlgray. Suie 1204. AJbiion. VA mw40.and to mtOie of 04 frtn end Pagiavy ftan. OR"ic ot

1. AGENCY USE ONLY (Loav fimnar) 2. REPORT DATE [3. REPORT TYPE AND DATES COVERED

II Final: 11 Feb 1991 to 01Jun 1993
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

TeleSoft, TeIeGen2 Ada Cross Developm,ent System, Version 4.1, for VAX/VMS to
68k, MicroVAX 3800(Host) to Motorola MVME 133A-20 (MC68020)(Target).
91012111.11124

6. AUTHOR(S)

IABG-AVF
Ottobrunn, Federal Republic of Germany

7. PERFORMING ORGANIZATION NAM E(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

IABG-AVF, lndustrieanlagen-Betriebsgeselschaft REPORT NUMBER

Dept. SZT/ Einsteinstrasse 20 IABG-VSR 087
0-80 12 Ottobrunn
FEDE!IAL REPUBLIC OF GERMANY

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSJES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

1 2a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

TeleSoft, TeleGen2 Ada Cross Development System, Version 4.1, Ottobrunn, Germany, for VAX/VMS to 68k, MicroVAX
3800 (under VAX/VMS Version V5.2))(Host) to Motorola MVME 133A-20 IMC68020)(bare machine)(Target), ACVC 1. 11.

~AUG f319t~J91-08750

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16.___PRICE __CODE_

Capability. Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 1.PIECO

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLA,'SIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED _________

NSN 7540-01 -280-550 Standard Form 298. (Rev 2-89)
Prescribed by ANSI Std 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 91-01-21.

Compiler Name and Version: TeleGen2T" Ada Cross Development System,
Version 4.1, for VAX/VMS to 68k

Host Computer System: MicroVAX 3800 (under VAX/VMS Version V5.2)

Target Computer System: Motorola MVME 133A-20 (MC68020)
(bare machine)

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
#91012111.11124 is awarded to TeleSoft. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

Ada Vakda n rganization
Director, = ter & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311 Aooession For

(DTIC T.

-da Joint Program Office ju) L :ic ,
Dr. John Solomond, Director
Department of Defense By.
Washington DC 20301

;i st ".: a

AVF ontrol Number: IABG-VSR 087
11 February 1991

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 91012111.11124
TeleSoft

TeleGen2" Ada Cross Development System
Version 4.1, for VAX/VMS to 68k

MicroVAX 3800 =>
Motorola MVME 133A-20 (MC68020)

== based on TEMPLATE Version 91-01-10 ==

Prepared By:
IABG mbH, Abt. ITE
Einsteinstr. 20
W-8012 Ottobrunn

Germany

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 91-01-21.

Compiler Name and Version: TeleGen2TM Ada Cross Development System,
Version 4.1, for VAX/VMS to 68k

Host Computer System: MicroVAX 3800 (under VAX/VMS Version V5.2)

Target Computer System: Motorola MVME 133A-20 (MC68020)
(bare machine)

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
#91012111.11124 is awarded to TeleSoft. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

, Ada Va i n Organization
Direc or puter & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: TeleSoft
5959 Cornerstone Court West
San Diego CA USA 92121

Ada Validation Facility: IABG, Dept. ITE
W-8012 Ottobrunn
Germany

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: TeleGen2T Ada Cross Development
System, Version 4.1,
for VAX/VMS to 68K

Host Computer System: MicroVAX 3800
(under VAXNMS Version V5.2)

Target Computer System: Motorola MVME 133A-20 (MC68020)
(bare machine)

Customer's Declaration

I, the undersigned, declare that TeleSoft has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-
STD-1 81 0 8652-1987 in the implementation listed above.

t t Date: Z3__ . _ _ _ I_ _

Raymond A. Parra
Vice President
General Counsel

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESS.NG INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-2
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83] using the
current Ada Compiler Validation Capability (ACVC) . This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service

5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-2

INTRODUCTION

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation PFocedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECKFILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECKFILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A li-t
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-3

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described
in the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada prograrrs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-4

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and

conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial
or complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-5

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 91-01-09.

E28005C B28006C C34006D C35702A B41308B C43004A
C45114A C45346A C45612B C45651A C46022A B49008A
A74006A C74308A B83022B B83022H B83025B B83025D
B83026B C83026A C83041A B85001L C97116A C98003B
BA2011A CB7001A CB7001B CB7004A CC1223A BC1226A
CC1226B BC3009B BDlB02B BD1BO6A ADIB08A BD2AO2A
CD2A21E CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A
CD2B15C BD3006A BD4008A CD4022A CD4022D CD4024B
CD4024C CD4024D CD4031A CD4051D CD5111A CD7004C
ED7005D CD7005E AD7006A CD7006E AD7201A AD7201E
CD7204B AD7206A BD8002A BD8004C CD9005A CD9005B
CDA201E CE2107i CE2117A CE2117B CE2119B CE2205B
CE2405A CE3111C CE3116A CE3118A CE3411B CE3412B
CE3607B CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declazations requiring
more digits than SYSTEM.MAXDIGITS:

C24113L. .Y '14 tests) C35705L. .Y (14 tests)
C35706L. .Y (14 tests) C35707L. .Y (14 tests)
C35708L. .Y (14 tests) C35802L. Z (15 tests)
C45241L. .Y (14 tests) C45321L. .Y (14 tests)
C45421L. .Y (14 tests) C45521L. .Z (15 tests)
C45524L. .Z (15 tests) C45621L. .Z (15 tests)
C45641L. .Y (14 tests) C46012L .Z (15 tests)

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONGINTEGER, or
SHORTINTEGER.

C355081..J and C35508M..N (4 tests) include enumeration representation
clauses for Boolean types in which the specified values are other than
(FALSE => 0, TRUE => 1); this implementation does not support a change
in representation for Boolean types. (See section 2.3.)

C35713B, C45423B, B86001T, and C86006H check for the predefined
type SHORTFLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORTFLOAT.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 47 or
greater.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINEOVERFLOWS is FALSE for floating point types; for this
implementation, MACHINEOVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT _O, and hence
package REPORT, obsolete. For this implementatior, the package TEXTIO
is dependent upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than DURATION.

CA2009C, CA2009F, BC3204C, and BC3205D check whether a generic unit can
be instantiated BEFORE its generic body (and any of its subunits) is
compiled. This implementation creates a dependence on generic units
as allowed by AI-00408 and AI-00530 such that the compilation cf the
generic unit bodies makes the instantiating units obsolete. (See
section 2.3)

LA3004A..B (2 tests), EA3004C..D (2 tests), and CA3004E..F (2 tests)
check for pragma INLINE for procedures and functions.

CD1009C uses a representation clause specifying a non-default size
for a floating-point type.

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

2-2

IMPLEMENTATION DEPEN)ENCIES

The tests listed in the following table are not applicable because tie
given file operations are supported for the given combination of modea
and file access method.

Test File Operation Mode File Access Method
CE2102D CREATE IN FILE SEQUENTIALIO
CE2102E CREATE OUT_FILE SEQUENTIAL_I
CE2102F CREATE INOUTFILE DIRECT_10
CE2102I CREATE IN FILE DIRECTIO
CE2102J CREATE OUT FILE DIRECTIO
CE2102N OPEN IN FILE SEQUENTIAL_10
CE21020 RESET INFILE SEQUENTIAL_10
CE2102P OPEN OUTFILE SEQUENTIAL_10
CE2102Q RESET OUTFILE SEQUENTIALIO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECTIO
CE2102V OPEN OUT FILE DIRECTIO
CE2102W RESET OUT FILE DIRECTIO
CE3102E CREATE IN FILE TEXT_10
CE3102F RESET Any Mode TEXTIO
CE3102G DELETE TEXT_10
CE31021 CREATE OUT FILE TEXT IO
CE3102J OPEN IN FILE TEXTIO
CE3102K OPEN OUTFILE TEXTIO

CE2107B..E (4 tests), CE2107L, CE2110B, and CE2111D attempt to associate
multiple internal files with the same external file when one or more files
is writing for sequential files. The proper exception is raised when
multiple access is attempted.

CE2107G..H (2 tests), CE2110D, and CE2111H attempt to associate multiple
internal files with the same external file when one or more files is
writing for direct files. The proper exception is raised when multiple
access is attempted.

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALIO. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USEERROR if the capacity of the
external file is exceeded for DIRECTIO. This implementation does not
restrict file capacity.

CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A attempt to associate
multiple internal files with the same external file when one or more
files is writing for text files. The proper exception is raised when
multiple access is attempted.

CE3304A checks that USE ERROR is raised if a call to SETLINE LENGTH or
SET PAGE_LENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page

2-3

IMPLEMENTATION DEPENDENCIES

number exceeds COUNT'LAST. For this implementation, the value of

COUNT'LAST is greater than 150000 making the checking of tiis objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 26 tests.

C355081..J and C35508M..N (4 tests) were graded inapplicable by Evaluation

Modification as directed by the AVO. These tests attempt to change the
representation of a boolean type. The AVO ruled that, in consideration of

the particular nature of boolean types and the operations that are defined

for the type and for arrays of the type, a change of representation need

not be supported; the ARG will address this issue in Commentary AI-00564.

The following tests were split into two or more tests because this

implementation did not report the violations of the Ada Standard in the way

expected by the original tests.

BA1001A BA2001C BA200lE BA3006A BA3006B

BA3007B BA3008A BA3008B BA3013A

CA2009C, CA2009F, BC3204C, and BC3205D were graded inapplicable by

Evaluation Modification as directed by the AVO. Because the implementation

makes the units with instantiations obsolete (see section 2.2), the Class C
tests were rejected at link time and the Class B tests were compiled

without error.

CD1009A, CDI009I, CD1C03A, CD2A21C, CD2A22J, CD2A24A, and CD2A31A..C

(3 tests) use instantiations of the support procedure Length-Check, which

uses UncheckedConversion according to the interpretation given in

AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the

tests are ruled to be passed if they produce Failed messages only from the
instantiations of LengthCheck--i.e., the allowed Report.Failed messages

have the general form:

" * CHECK ON REPRESENTATION FOR <TYPE ID> FAILED."

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for both technical and sales information about this
Ada implementation system, see:

TeleSoft
5959 Cornerstone Court West
San Diego, CA 92121, USA

(619) 457-2700

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3-1

PROCESSING INFORMATION

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90.

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3801
b) Total Number of Withdrawn Tests 84
c) Processed Inapplicable Tests 84
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 285 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 285 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by a serial communications link, and run. The results were captured
on the host computer system.

Test output, compiler and linker listings, and job logs were captured on a
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-2

PROCESSING INFORMATION

Testing was performed using command scripts provided by the customer and

reviewed by the validation team. See Appendix B for a complete listing of

the processing options for th.s implementation. It also indicates the

default options. The options invoked explicitly for validation testing

during this test are given on the next page, which was supplied by the

customer.

3-3

Compiler Option Information

B TESTS:

TSADA/E68/ADA'/LIST-'testnameVIRT=3000 'testfile&

option description

E68 choose VAX,'E68 compiler
ADA invoke TeleGen2 Ada cross compiler
LIST=< >generated interspersed error listing
VIRTUAL _SPACE set virtual space of library manager other than default (2500)
'testfile' the filename being compiled

NON B TESTS:

VME 133 board:

TSADA/E68/ADA/VIRTUAL=3000 'testfile'
TSADA /E68 /LINK /LOAD -MOD UL E='testname'/ OPTIONS=< additional opt> 'mainname'

option description
E68 choose VAX/E68 compiler
ADA invoke TeleGen2 Ada cross compiler
VIRTUAL-SPACE set virtual space of library manager other than default (2500)
LINK invoke TeleGen2 Ada linker
LOAD MODULE=< > specify name of executable created
OPTIONS=< additional opt> use additional options from the named options file
'testfile' the filename being compiled
'mainname' the name of the main compilation unit

3-4

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89] . The

parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where 'V" represents the maximum input-line

length.

Macro Parameter Macro Value

$MAXINLEN 200 -- Value of V

SBIGIDI (.V-1 > 'A', V => '1')

$BIGID2 (i..V-l => 'A', V -> '2')

$BIGID3 (1..V/2 => 'A') & '3' &
(l..V-I-V/2 => 'A')

SBIGID4 (I..V/2 => 'A') & '4' &

(1..V-I-V/2 => 'A')

SBIGINTLIT (l..V-3 => '0') & "298"

$BIGREALLIT (l..V-5 => '0') & "690.0

$BIGSTRING1 '"' & (l..V/2 => 'A') & "

SBIGSTRING2 '"' & (1..V-l-V/2 => 'A') & 'i' & '"'

$BLANKS (l..V-20 => '

SMAXLENINTBASEDLITERAL

2:" & (l..V-5 => '0') & "I :"

SMAXLENREALBASED LITERAL
"16:" & (l..V-7 => '0') & "F.E:"

SMAX STRING LITERAL "CCCCCCCIOCCCCCCCC20CCCCCCCC30CCCCCCCC40
CCCCCCCC50CCCCCCCC60CCCCCCCC70CCCCCCCC80

CCCCCCCC90CCCCCCC10OCCCCCCillOCCCCCCC120

CCCCCCC130CCCCCCC140CCCCCCC15OCCCCCCC160

CCCCCCC17oCCCCCCC1 8oCCCCCCC190CCCCCC199"

A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

SACCSIZE 32

$ALIGNMENT 4

SCOUNTLAST 2_147_483_646

$DEFAULTMEMSIZE 2147483647

SDEFAULTSTORUNIT 8

SDEFAULTSYSNAME TELEGEN2

SDELTADOC 2#1.0#E-31

SENTRYADDRESS ENT-ADDRESS

SENTRYADDRESS1 ENTADDRESSI

SENTRYA'A, ESS2 ENTADDRESS2

SFIELDLAST 1000

SFILETERMINATOR r

SFIXED-NAME NOSUCHTYPE

$FLOATNAME NOSUCHTYPE

SFORMSTRING of

$FORMSTRING2 "CANNOT RESTRICT_ FILE_-CAPACITY"

SGREATERTHANDURATION
100_000.0

SGREATERTHANDURATIONBASELAST
131_073.0

SGREATERTHANFLOATBASELAST
3. 40283E+38

$GREATERTHANFLOATSAFELARGE
4. 25354E+37

$GREATERTHANSHORTFLOATSAFrELARGE
0.0

SHIGH-PRIORITY 63

A-2

MACRO PARAMETERS

S ILLEGAL EXTERNAL FILE NAME 1
BADCHAR*^/%

SILLEGALEXTERNALFILENAME2
/NONAME/DIRECTORY

SINAPPROPRIATELINELENGTH
-1

S INAPPROPRIATEPAGELENGTH
-1

SINCLUDEPR.AGMAl PRAGMA INCLUDE ("A28006D1.ADA")

SINCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006D1.ADA')

SINTEGERFIRST -32768

$INTEGERLAST 32767

SINTEGERLASTPLUS_1 32768

S INTERFACELANGUAGE C

SLESSTHANDURATION -100_000.0

$LESSTHANDURATIONBASEFIRST
-131_073.0

SLINETERMINATOR f'

SLOWPRIORITY 0

SMACHINECODESTATEMENT
MCI' (OP -> NOP);

SMACHINECODE TYPE Opcodes

SMANTISSADOG 31

SMAXDIGITS 15

SMAXINT 2147483647

SMAXINTPLUS_1 2_147_483_648

SMIN INT -2147483648

$NAME NOSUCHTYPEAVAILABLE

$NAME-LIST TELEGEN2

SNAMESPECIFICATION1 SYSSWATCHER:tVME133]x2120A.;l

$NAMESPECIFICATION2 SYS$WATCHER: EVME133]X2120B. ; 2

A- 3

MACRO PARAMETERS

$NAMESPECIFICATION3 SYSSWATCHER: (VME133]X3119A. :1

SNEGBASEDINT 16#FFFFFFFE#

SNEWMEMSIZE 2147483647

S$EWSYSNAME TELEGEN2

SPAGE-TERMINATOR ASCII.FF

$RECORDDEFINITION RECORD NULL; END RECORD;

SRECORDNAME NOSUCHMACHINE CODE TYPE

$TASKSIZE 32

$TASKSTORAGESIZE 2048

$TICK 0.01

$VARIABLEADDRESS VARADDRESS

$VARIABLEADDRESS1 VARADDRESS1

$VARIABLEADDRESS2 VARADDRESS2

A- 4

APPENDIX B

COMPILATION SYSTEM AND LINKER OPTIONS

The compiler and linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and not
to this report.

B-1

TELESOFT

TeleGen2 Ada Development System

for VX/VMS8 Systems

to Embedded MC68OX0 Targets

Compiler Command Options

OPT-1745N-V1.1 (VAX.E68) 21JAN91

Version 4.01

Copyright 0 1991, TeleSoft.
All rights reserved.

Copyright Q 1991, TeleSoft. All rights reserved.
TeleSoft* is a registered trademark of TeleSoft.
TeleGen2 TM is a trademark of TeleSoft.
VAX and VMS" are registered trademarks of Digital Equipment Corp.".

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c) (1) (ii) of the rights in Technical Data and Computer Software clause at
DFAR 252.227-7013, or FAR 52.227-14, ALT III and/or FAR 52.227-19 as set forth in the
applicable Government Contract.

TeleSoft
5959 Cornerstone Court West
San Diego, CA 92121-9819
(619) 457-2700
(Contractor)

Chapter 1 Contents

I Compiler command options..i1-1
1.1 ADA .. I....................... 1-1
1.2 BIND .. 1-17
1.3 LINK 1-2,

a

TeleGen2 for VAX/VMS-E68

1

Compiler command options

1.1. ADA

[Compiler]

Introduction

After access to TeleGen2 has been established and a library has been
created, you can invoke the Ada compiler via the ADA command. The
general command format for compilation is

TSADA/E68/ADA/[<qualifier>[,....]] <file>

where

<qualifier> One of the qualifiers available for the compiler.

<file> One in a possible series of file specifications,
separated by commas, indicating the unit(s) to be
compiled. If /INPUT_LIST is used. < file> is
interpreted as a file containing a list of files to be
compiled. The default source file t, pe is ADA,
and the default list file type is U1S. A tile name
may be qualified with a location in standard
VAX/VMS format. A source or input list file may
reside on any directory in the system.

The default qualifier settings are designed to allow for the simplest and
most convenient use of the compiler. For most applications, no
additional qualifier setting need be specified. However. optional
qualifiers are provided to perform special functions.

(}PT- 174-41,-\1.1 iV-AX.Efim) wkJ N9)-I

ADA TeleGen2 for VAX/VMS-E68

Qualifiers

/ABORTCOUNT= < n >
/ABORTCOUNT=999 (default)

The /ABORTCOUNT qualifier is an execution control qualifier for
the compiler. It allows you to set the maximum number of errors the
compiler can locate before it aborts. This qualifier can be used with
any combination of compiler options. The minimum value is 1 and the
default value is 999.

The compiler maintains separate counts of all syntactic errors,
semantic errors, and warning messages issued during a compilation. If
any of these counts becomes too great, you may want to abort the
compilation. If the compiler does find errors, you can abort the
compilation by entering control-Y ("Y) or you can wait until the
checking is completed. The /ABORT COUNT qualifier allows you to
determine the number of errors that you believe is reasonable before
the compiler aborts.

/ASSEMBLY CODE[= <file>]
/NOASSEMBLYCODE (default)

With the /ASSEMBLYCODE qualifier, you can obtain an assembly
listing of compiler generated code for a unit or a collection. You can
use this qualifier with the compiler, the binder and the optimizer in the
same way. The listing is similar to that produced with the
/MACHINE CODE qualifier, except that it will not contain location
or offset information. The file produced with the
/ASSEMBLYCODE qualifier is suitable as input to an assembler. In
contrast, the file produced by /MACHINECODE is more suitable
for human readability. The default file name is the same as it would be
for /MACHINECODE, i.e., the unit name being compiled.

/ASSEMBLYCODE and /MACHINE CODE are mutually
exclusive.

/BIND= <main > [<qualifier>]
/NOBIND (default)

This qualifier, when used with the compiler, enables you to bind a
main program more efficiently by combining the binding process with
the compilation process. This feature is especially useful when
compiling singJe-unit test programs. The binding of more than one
main program is not supported, though programs that contain multiple
compilation units may be bound.

1-2 OPT-I 45N.V.1AX.E6Xi 04JAN9!

ii IfI

Command options ADA

Default settings for the qualifier values were chosen for the simplest
and most convenient use of the binder. For most applications, no
additional qualifiers are required. Optional qualifiers are provided, as
shown in the following list:

/DEBUG Bind the program for use with the
debugger.

/PROFILE Bind the program for use with the
profiler.

/LIBFILE Specify a library other than the default
LIBLST.ALB.

/TEMPLIB Specify a library other than the default
LIBLST.ALB.

/SHOWTASK EXCEPTION Cause unhandled exceptions in tasks to
be reported in the same manner as those
that occur in the main program.

/TASKSTACKSIZE Set the default amount of stack to allocate
from the Ada heap for each task.

/STACK GUARD SIZE Specify the amount of additional stack
space to allocate (in addition to
/TASKSTACKSIZE) for each task.

/TRACEBACK Set the depth of the run-time exception
traceback report.

/CONTEXT= <n >
/CONTEXT=1 (default)

When an error message is output, it is helpful to include the lines of
the source program that surround the line containing the error. These
lines provide a context for the error in the source program and help to
clarify the nature of the error. The /CONTEXT qualifier controls the
number of source lines that immediately precede and follow the error.
The qualifier affects the error messages output on SYSSOUTPUT or
in a listing. In a mixed listing. the context Lines will be duplicated. In a
listing using /NOMIXED. the context lines will be included for each
error Listed after the complete source listing. The default setting for
this qualifier is I.

OPT. 1745N-VI.AINVAX.E68i 04JAN91 1-3

ADA leIeLlen. tor vAx/VM--ots

Note: The main program unit must be located in the working sublibrary.
If this is not the case, reorder the sublibraries in the library file or
use TSADA/E68/MOVE or TSADA/E68/COPY to move or
copy the unit to the working sublibrary.

If these conditions are met, you may proceed to bind and Link the
program.

/DEBUG
/NODEBUG (default)

To use the debugger, you must compile, bind, and link program units
using the /DEBUG qualifier. This ensures that source debugging
information and a link map are put into the Ada library for use by the
debugger. The /DEBUG qualifier causes the compiler to save High
Form for debugging purposes. It also causes the compiler to generate
Debugging Information (DI) for any unit that is to be used with the
debugger.

Because this qualifier is positional, the debug information is generated

only for the specified files. For example,

$ TSADA/E68/ADA A,B/DEBUG,C

compiles A.ADA and B.ADA without debugging information, and
compiles C.ADA with debugging information. For information on
positional qualifiers, see the Overview.

The default setting of this qualifier is /NODEBUG. The use of
/DEBUG ensures that the High Form and debugger information for
secondary units are not deleted. While the compilation time overhead
generated by use of /DEBUG is minimal, retaining this optional
information in the Ada Library increases the space overhead. To
check if a compilation unit has been compiled using /DEBUG, use the
TSADA/E68/SHOW/EXTENDED command for the unit.

/DIAGNOSTICS[= <file>]
/NODIAGNOSTICS (default)

If warnings or errors are encountered during compilation, this qualifier
specifies that the compiler or binder is to produce a diagnostics file
(with the file type DIA). This file contains information that allows
you to use the VAX Language Sensitive Editor (LSE) to quickly
correct source errors. More information can be found in the LSE
manual.

This qualifier is positional, so the location of the command and its
parameters on the command line is important. Only diagnostics files
for the specified tiles are generated.

1-4 ()PT. 1745N-U.hV(AX.E681 O4J-N91

Command options ADA

/ENABLETRACEBACK
/NOENABLETRACEBACK (default)

In the unlikely event that vou should receive an Unexpected Error
Condition message, you should contact Customer Support. Customer
Support may request that you provide additional information about the
error condition by including the /ENABLE-TRACEBACK qualifier
in the compiler invocation that fails. This qualifier allows the tool to
display the exception traceback associated with the unexpected error
condition. The information provided in the traceback will allow
Customer Support to diagnose the problem more efficiently.

/GRAPH[= <file>]
/NOGRAPH (default)

The /GRAPH qualifier is used with the optimizer while compiling, and
it generates a textual representation call graph for the unit being
compiled and optimized. This qualifier is positional, so the location of
the command and its parameters on the command Line is important.
The specified parameters for /GRAPH are the graph files to be
generated. For instance, the command

TSADA/E68/ADA A.B/GRAPH, C

compiles A.ADA. then sends a graph to B.GRF, then compiles
C.ADA. For information on positional qualifiers, see the Overview.

The default setting is /NOGRAPH. If you specify graph, the following
file specifications can result:

<file> A name you specify for the file to which the
generated graph is sent.

<unit>. GRF A name provided for the file by default, where
< unit > is the name of the unit being compiled
when optimizing during compilation.

If multiple units are being compiled and optimized, and call graphs are
desired, /GRAPH should be used without specifying a file name. The
graph for each unit will be located in a separate file named after the
unit. If you specify a < file >, separate versions of the file will be
created for each unit.

()PT-1'45N.VI.t(\' X.E68) 04J.-%N9I 1.5

ADA TeleGen2 for VAX/VMS-E68

/INPUT UST
/NOINPUT_UST (default)

As a default, the file list specified in the TSADA/E68 command is the
list of specifications of the files containing the Ada units to be
compiled. When you specify the /INPLLIST qualifier, the compiler
assumes that the command contains one file specification, and that this
file contains a list of source files to be compiled. When this qualifier is
used, the input file should contain the source file specifications, one
per line. For example, to compile source files CALC_ AR/TI.ADA
and CALC .MEM.ADA in the current default directory and file
CALC IO.ADA in directory [CIOSRC], you could first prepare a file
CALCCOM{PILE.LIS containing the following text:

CALC ARITH
CALC MEM
[CIOSRC]CALC IO

The command:

$ TSADA/E68/ADA/INPUTLIST CALCCOMPILE.LIS

would then cause these three files to be compiled in sequence.

In addition to the names of the source files, the input list may contain
comments in Ada syntax, i.e., all text on a line including and following
the comment marker "--" will be ignored.

/INPUT-_LIST is a positional qualifier. The specified parameters are
input lists, and all other parameters are source files. For example, the
command line

$ TSADA/E68/ADA A,B/INPUTLIST,C

compiles A.ADA first. It then compiles all files in B.LIS, and finally, it
compiles C.ADA.

/INPL"T LIST has the same advantages and effects as a multi-file
compilation specified on the command Line. /INPUTLIST is useful
when a long list of files to compile has been readily obtained from a
directory listing or a TSADA/E68/SHOW library report.

When the /IN'PUT LIST qualifier is used in conjunction with the
default /UPDATE qualifier, the working sublibrary is updated after
each unit that successfully compiles. If a unit in the list fails to compile
due to errors, the sublibrarv is still updated for all other successfully
compiled units before and after it in the list. If /NOUPDATE is used,
the sublibrarv is not updated for any unit if one unit fails to compile.

1-6 ()T Ir5 - Ii\% .6 1 04J-0,91

ADA TeleGen2 for VAX/VMS-E68

/INPUTUST
/NOINPUTUST (default)

As a default, the file list specified in the TSADA/E68 command is the
[Est of specifications of the files containing the Ada units to be
compiled. When you specify the /INPUTLIST qualifier, the compiler
assumes that the command contains one file specification. and that this
file contains a list of source files to be compiled. When this qualifier is
used, the input file should contain the source file specifications, one
per line. For example, to compile source files CALC ARITH.ADA
and CALC MEM.ADA in the current default directory and file
CALC IOADA in directory [CIOSRC], you could first prepare a file
CALC-COMPILE.LIS containing the following text:

CALC ARITH
CALC MEM
(CIOSRC]CALC_10

The command:

$ TSADA/E68/ADA/INPUTLIST CALCCOMPILE.LIS

would then cause these three files to be compiled in sequence.

In addition to the names of the source files, the input list may contain
comments in Ada syntax, i.e., all text on a line including and following
the comment marker "--" will be ignored.

/INPUTLIST is a positional qualifier. The specified parameters are
input lists, and all other parameters are source files. For example, the
command line

$ TSADA/E68/ADA A,B/INPUTLIST,C

compiles A.ADA first. It then compiles all files in B.LIS, and finally, it
compiles CADA.

/INPLT-I LIST has the same advantages and effects as a multi-file
compilation specified on the command line., INPLT _LIST is useful
when a long list of files to compile has been readily obtained from a
directory listing or a TSADA/E68/SHOW librar\ report.

When the /INPT LIST qualifier is used in conjunction with the
default /UPDATE qualifier, the working sublibrary is updated after
each unit that successfully compiles. If a unit in the list fails to compile
due to errors, the sublibrary is still updated for all other successfully
compiled units before and after it in the list. If ,NOUPDATE is used,
the sublihrary is not updated for any unit if one unit fails to compile.

1-6 (P'T-'4.€ -\ |.1 %X.h 1 4,N1 ,

Command options ADA

If the /BIND qualifier is used in conjunction with the /INPUT_ LIST
qualifier, the main program unit name may be given as the value of the
/BIND qualifier to identify which unit in the list is the main program.
If not specified, the last unit of the input list is assumed to be the main
program.

/UBFILE= <file>
/OBFILE = UBLST.ALB (default)

By default, the library file named LIBLST with a default mpe of .ALB
is used by the TeleGen2 tool set to determine which set of sublibraries
are to be referenced during the operation of the tool. This file must be
present in the working directory. With the /LIBFILE qualifier, you
can specify a library other than the default, LIBLST.ALB. /TEMPLIB
may also be used to create an alternative library. However, the
/TEIPLIB and /LIBFILE qualifiers are mutually exclusive; only one
or the other qualifier may be used at the same time.

When you specify the /LIBFILE qualifier, you indicate the file
specification of an alternative library file that contains the list of
sublibraries and optional comments. If you do not specify a file type
with the file name, the system uses the file type -ALB.

For example, consider a library file named WORKLIB.ALB with the
contents:

Name: MYJORK
Name: [CALCPROJ]CALCLIB
Name: TSADA$E68:[LIB.68020]RTL

You could specify

$ TSADA/E68/ADA/LIBFILE=-ORKLIB

As an alternative to using /LIBFILE, you may assign the library file
specification to the logical name LIBLST. For example.

$ ASSIGN WORKLIB.ALB LIBLST

/UST= <file>
/NOUST= <file> (default)

The /LIST qualifier to the ,ADA compiler command produces a file
containing a source listing with numbered Lines and any error
messages. This qualifier is positional, so the location of the qualifier
and its parameters on the command line is important. A list will only
he generated for the specified parameters.

The compiler alha,., outputs error messages to the device specified by
SYSSOLT'PUT. The LIST qutlifier causes the error listing to be

0PT-1I4-5N-I1.1i\-X.E6) 04JA- 1)17

ADA TeleGen2 for VAX/VMS-E58

incorporated in the source Listing file as well. The default Listing
contains the errors intermixed with the source code.

You can provide a file specification to the /LIST qualifier which
indicates the VMS file to receive the error output.

The default is for /LIST is /NOLIST. The /NOLIST qualifier will
suppress error output to the listing file.

If the /LIST qualifier is used without a file specification, the error
output is sent to the file named < fle >.LIS, where < file> is the name
of the source file being compiled. If you provide a file specification,
the output is sent to the specified file instead of < file>.LIS. If your
file specification does not include a file type, the system gives the file

the type, .LIS.

If a file name is specified and multiple source files are being compiled,
the listing for each file is output to a separate version of the file name
specified.

/MACHINE CODE[= <file>]
/NOMACHINECODE (default)

The /MACHINE_CODE qualifier allows you to obtain an assembly
listing of the code that the compiler generates for a unit or a collection.
The listing consists of assembly code intermixed with source code as
comments. Note that the listing generated by this qualifier is
independent of the source/error listing generated by the /LIST
qualifier. The default for this qualifier is /NOMACINECODE.

The listing output is sent to a file named < unit > .S if the unit is a
library unit, and < unit > .S if the unit is a secondary unit. < unit > is the
name of the compilation unit that is being listed.

If multiple compilation units are being compiled and you have provided
a file specification, the machine code listing for each compilation unit
will be output to a different version of the same file name.

If the compilation unit name is longer than 39 characters, the name will
be truncated at 39 characters. No listing will be generated if there are
syntactic or semantic errors in the compilation.

I-8)PT.'J. -\ ~lqVkX.E8) 4JA'%9l

Command options ADA

/MONITOR
/NOMONITOR (default)

Normally, the only visible output produced by the TeleGen2 tool set
during operation is error or warning messages. The /MONITOR
qualifier enables the reporting of version numbers and messages that
allow you to monitor the tool's progress. When you specify
/MONITOR. the output is sent to standard output (SYSSOLTPUT).

/OBJECT (default)
/NOOBJECT

The /NOOBJECT qualifier instructs the compiler to perform syntactic
and semantic analysis of the source program without generating object
code. /NOOBJECT sets a default of /NOSQUEEZE to ensure that
the High Form and Low Form are preserved for secondary units. The
default setting is /OBJECT. which allows the generation of object
code.

/OPTIMIZE[= <option > [,..]][<qualifier>]
/NOOPTIMIZE (default)

The /OPTIMIZE qualifier causes the compiler to invoke the
optimizer to optimize the Low Form generated by the middle pass for
the unit being compiled. The code generator takes the optimized Low
Form as input and produces more efficient object code.

/NOOPTIMIZE is the default. The /NOOPTIMIZE qualifier gives
the quickest compilation turnaround, but does not perform many code
optimizations. This results in code that may run slower and be larger
than normal. Code intended for use with the Debugger must be
compiled at this level of optimization.

This qualifier is positional. so the location of the qualifier and its
parameters is important. /OPTIMIZE will only optimize the specified
parameters. For example, the qualifier may appear on both on the
verb that is changing the default and on one or more parameters. The
verb qualifier indicates that all parameters will be optimized. The
parameter qualifier indicates that Y is not to be optimized.

$ TSADA/E68/ADA/OPTIMIZE XY/NOOPTIMIZE,Z

The result is that the files in X.ADA are compiled and optimized.
followed by the file YADA. The files in Z.ADA are compiled. but not
optimized.

()IX]' 4.5N-V 1. I, \ X.E68) 0 4J -%\91 1-9

ADA TeleGei2 for VAX/VMS-E68

There are two parameters that are used with /OPTIMIZE. These are:

<option> Zero or more of optimizer options on the
command line, separated by commas.

<qualifier> The qualifier /NOGRAPH or
/GRAPH[= < file>] /NOGRAPH is the default
value. /GRAPH generates a call graph for the
unit being compiled. The default output file is
<unit>.GRF when you do note specify a <file>.
(See the Global Optimizer for more information
on this qualifier.)

You can specify zero or more optimizer options to control
optimization. These options are listed here briefly. For more
information on these options, see the Optimize command in the
Command Summary.

Options Defaults Operation
ALL I NONE I SAFE ALL Enable/disable certain

optimizations, or permit
only safe optimizations.

(NO]AUTOINLINE AUTOINLINE Controls automatic iiniig.
[NO]INLINE[: < file >] INTLINE Enables inline expansion of

subprograms.

[NO]PARALLEL PARALLEL Subprograms may be called
from parallel tasks.

[NO]RECURSE RECURSE Subprograms may be called
recursively.

[NO]SPEED SPEED Produce fastest code but
slowest compilation speed.

Depending on the amount of optimization you require, you can operate
the compiler on one of three optimization levels. You would typically
use /NOOPTIMIZE during debugging and development, while levels
OPTIMIZE = NOSPEED or OPTIMIZE =SPEED would be used for
final product development. The SPEED option instructs TeleGen2 to
produce the fastest executable code. even at the expense of a slower
compilation.

I-Ia OPT. I 4-SN.,V 1.1 V\'LX.E681 4)4J -XN91

Command options ALUA

/PROFILE
/NOPROFILE (default)

The /PROFILE qualifier causes the code generation phase of
compilation to place special profiler run-tine code into the generated
object module. This qualifier is a positional qualifier when it is used
with /ADA. /PROFILE generates profile information only for
specified files because of this characteristic. For information on
positional qualifiers, see the Overview. For example, /PROFILE can
take the following actions, depenling on its location on the command
Line.

S.. /ADA/PROFILE A, B, C produces profile info for A, B and C.

S, ./ADA A, B/PROFILE, C produces profile info only for C.
S,. /ADA/PROFILE A, B/NOPROFILE, Cproduces profile info only for A and C.

/PROFILE can be used with the /OPTINIZE option, which causes
the code generator to include the profiler run-time code following the
optimization. If you use the /BIND qualifier, /PROFILE instructs the
binder to link in the profiler run-time support routines. If you have
compiled any code in a prc-gram with the /PROFILE qualifier, then
you must also supply the /PROFILE qualifier to the binder if the
program is bound separately.

The default for this qualifier is /NOPROFILE.

/SQUEEZE (default)
/NOSQUEEZE

When you compile an Ada program, the compiler stores two
intermediate code representations of the program in the library. These
code representations are known as High Form and Low Form. High
Form must be retained for a library unit because it is required for the
compilation of any units that reference it. For example. a compiled
package specification's High Form are used by the corresponding
package body when it is compiled. However, intermediate forms of a
secondary unit, such as a package body, may frequently be discarded
after its compilation. Discarding this information results in a
significant decrease in library size (typically 50 to 70 percent for multi-
unit programs).

The SQUEEZE qualifier can be used with the compiler or the
optimizer ('OPTIIZE). Using the /SQUEEZE qualifier duri-ng
compilation causes the intermediate forms to be discarded after
compilation. if possible. /'NOSQUEEZE causes the full intermediate
forms to he sived in all cases.

)PI'-1745 N. .h1 \4- X.E6,) 04,JN91 1-11

ADA TeleGen2 for VAX/VMS-E68

Note: The optimizer (/OPTIMIZE), and cross-referen.xr (XREF)
programs require unsqueezed units. If you are going to use one
of these programs, you must compile the units using
/NOSQUEEZE.

The default for this qualifier is /SQUEEZE, with one exception. This
is the /NOOBJECT qualifier which is commonly used when compiling
units for coUective optimization. In this case, the object code is not
required. but unsqueezed units are. Thus, use of the /NOOBJECT
qualifier also causes /NOSQUEEZE to be the default. In either of
these cases, use of an explicit /SQUEEZE or /NOSQLEEZE
qualifier overrides the default.

To verify whether or not a unit has been squeezed, use the
TSADA/E68/SHOW/EXTENDED command for the unit. A unit
has not been squeezed if and only if the attributes High_Form and
LowForm appear in the listing for that unit.

/SUPPRESS[= <option >,...]]
/NOSUPPRESS (default)

The /SUPPRESS qualifier allows you to suppress selected run-time
checks and/or source line references in generated object code.

The Ada language requires, as a default, a wide variety of run-time
checks to ensure the validity of operations. For example, arithmetic
overflow checks are required on all numeric operations, and range
checks are required on all assignment statements that could result in
an illegal value being assigned to a variable. While these checks are
vital during development and an important asset of the language, they
introduce a substantial overhead. This overhead may be prohibitive in
time-critical applications. Thus, the Ada language provides a way to
selectively suppress classes of checks via the Suppress pragma.
However, use of the pragna requires modifications to the Ada source.

The /SUPPRESS qualifier provides a functional alternative to the
Suppress pragma. /SUPPRESS allows you to suppress checks in the
compiler invocation command without modifying the source code. The
Suppress pragma is valid in any declarative region of a package and
affects all nested regions. The /SUPPRESS qualifier is equivalent to
adding pragma Suppress to the beginning of the declarative part of
each compilation unit in a file.

The compiler also stores source Line and subprogram name
information by default in the object code. This information is used to
display a source level traceback when an unhandled exception
propagates to the outer level of a program. This information is dso
p.irticularlv valuable during development as it provides a direct

OPT-1745\AI. I hAX.E68 04J-N91

Command options ADA

indication of the source line at which the exception occurs and the
subprogram calling chain that led to the Line generating the exception.

The source Line information introduces an overhead of 6 bytes for each
line of source that causes code to be generated. Thus. a 1000-line
package may have up to 6000 bytes of source information. For one
compilation unit, the extra overhead (in bytes), is the total length of all
subprogram names in the unit (including Middle Pass generated
subprograms), plus the length of the compilation unit name. For
certain space-critical applications, this extra space may be
unacceptable and may be inhibited with the /SLPPRESS qualifier.
When the source line information is inhibited, the traceback indicates
the offset of the object code at which the exception occurs, instead of
the source line number. When the subprogram name information is
inhibited, the traceback indicates the offsets of the subprogram calls in
the calling chain, instead of the subprogram names.

When you specify an <option>, it represents one of a possible List of
options separated by commas. These options indicate the features to
be suppressed. The default setting is /NOSUPPRESS.

The options and their actions are presented in the following table. The
names of the options may be abbreviated as long as they remain unique
within the set of options. All options except SOURCE INFO and
ALL function as if a corresponding Suppress pragmna were present in
the Ada source. The exception is that
/SUPPRESS= (ELABORATION CHECK) differs from pragma
Suppress(ElaborationCheck). The switch suppresses elaboration
checks made by other units on this unit. The pragma suppresses
elaboration checks made on other units from this unit. The
NAME INFO option specifies that subprogram name information is
to be suppressed in the object code. The SOURCE INFO option
specifies that source line information is to be suppressed in the object
code. The ALLCHECKS option suppresses all run-time checks listed
in the table. The ALL option specifies that subprogram name
information, source line information, and all run-time checks in the
table are to be suppressed.

For example, the qualifier:

/SUPPRESS-(SOURCE,ELAB) MYFILE

inhibits the generation of source line information and elaboration
checks in the object code of the units in file MY FILE.

OPT-1,45N-Vi.IrVAX.E68) 0.4J-N91 1-13

ADA TeIeGen2 for VAX/VMS-E68

ALL Suppress source line information and all run-time checks
listed below.

NONE Equivalent to /NOSUPPRESS

SOURCE-INFO Suppress source line information in object code.

NAM- INFO Suppress subprogram name information in object code.

ALL-CHECKS Suppress all access checks. discriminant checks, division
checks, elaboration checks, index checks, length checks,
overflow checks, range checks, and storage checks.

ELABORATIONCHECK Suppress all elaboration checks.

OVERFLOW-CHECK Suppress aU overflow checks.

STORAGE-CHECK Suppress all storage checks.

/TASKSTACK SIZE = < n >
/TASKSTACK-SIZE = 4096 (default)

The /TASK STACK SIZE qualifier sets the default amount of stack
to allocate from the A da heap for each task. The <n> you specify is
the size of the task stack in bytes.

/TEMPUB= <sublib > [,....
/UBFILE = LIBLST.ALB (default)

This qualifier allows you to define a temporary library consisting of a
selection of sublibraries. The temporary library may be used for the
duration of a single command. In all uses, the /TEMPLIB and
/LIBFILE options are mutually exclusive, only one or the other
qualifier may be used at the same time.

<subl ib> The name of the sublibrar'y, optionally prefixed
with the specification of the VMS directory in
which it resides. If no directory is specified, the
current default directory is assumed. Multiple
sublibrary file specifications are separated by
commas in a list.

Semantically, the argument string of this qualifier is the logical
equivalent of a librar tie containing the listed sublibraries. one per

1-14 0trT-I 4N-VI1.hVAX.E68) 04Jk.N91

Command options ADA

line, in the order listed. Thus, we could list the sublibraries:

/TEMPLIB-(MYWORK, [CALCPROJICALCLIB,TSADASE68: [LIB.68020]RTL)

/TIME SLICE QUANTUM = < n >
/TIME-SLICE-QUANTUM = 0 (default)

This qualifier specifies the slice of time, in milliseconds. in which a task
is allowed to execute before the run-time switches control to another
ready task of equal priority. This timeslicing activity allows for
periodic round-robin scheduling among equal-priority tasks.
Timeslicing may or may not be implemented for a particular
environment.

The default value for /TIME_SLICE QUANTUM is 0 (i.e.,
timeslicing is disabled). No run-time overhead is incurred when
timeslicing is disabled.

/UPDATE (default)
/[NO]UPDATE

When multiple source files are being compiled. the /UPDATE
qualifier instructs the compiler to update the library after each source
file is compiled. The default setting is /UPDATE.

If /NOIJPDATE is used, and an error occurs during compilation, the
working sublibrary is not updated at all, for any unit, even for
remaining units in the source file in error. All remaining source files
will be compiled for syntactic and semantic errors only. The
/NOUPDATE qualifier is advantageous to use when it is known that
all the source files will compile without error and the user wishes to
save the overhead time involved in updating the library for each source
file.

/VIRTUALSPACE=< n >
/VIRTUAL_SPACE= 10000 (default)

This qualifier specifies the number of 1kb pages that will be used in
memory while the tool executes. Greater values will usually improve
performance, but will result in more physical memory requirements.

OPT-i745N-'.1 'X.E6s (1JAN91 1-15

ADA TeleGen2 for VAX/VMS-E68

1-16 ()PT-('745N-V.lu'.A\.16N' 014jA%91

Command options BIND

1.2. BIND

[Binder]

Introduction

The object code files generated by the compiler are TeleGen2.defined
Object Form files stored in the Ada library. These files must be bound to
create a linkable object. The binder program generates the code needed
to elaborate the components in a consistent order. The binder is invoked
when you use the /BIND qualifier.

The general command format of the bind step is

TSADA/E68/BIND[<qualifier> I <ain>

where

<main> indicates the name of the unit to be used as the
main program

<qualifier> none or more binder qualifiers

The following diagram illustrates how to put qualifiers and parameters
together into commands in order to invoke the binder.

Qualifiers

/ASSEMBLYCODE[= <file>]
/NOASSEMBLYCODE (default)

With the /ASSEMBLYCODE qualifier, you can obtain an assembly
listing of compiler generated code for a unit or a collection. You can
use this qualifier with the compiler. the binder and the optimizer in the
same way. The listing is similar to that produced with the
/MACHINE_CODE qualifier, except that it will not contain location
or offset information. The file produced with the
/ASSEMBLY CODE qualifier is suitable as input to an assembler. In
contrast, the file produced by /MACHINE_CODE is more suitable
for human readability. The default file name is the same as it would be
for /MACHINECODE, i.e., the unit name being compiled.

/'ASSEMBLY CODE and,/MACHINE CODE are mutuallv
exclusive.

OPT-1745\-V.I 1 \-X.E6H) 04JAN91 I-1"

BIND TeleGen2 for VAX/VMS-E68

/DEBUG
/NODEBUG (default)

To use the debugger, you must compile, bind. and link program units
using the 'DEBUG qualifier. This ensures that source debugging
information and a link map are put into the Ada library for use by the
debugger. The /DEBUG qualifier causes the binder to save the
intermediate forms of code for debugging purposes.

The default setting of this qualifier is /NODEBUG. The use of
/DEBUG ensures that the High Form and debugger information for
secondary units are not deleted. While the compilation time overhead
generated by use of /DEBUG is minimal, retaining this optional
information in the Ada Library increases the space overhead. To
check if a compilation unit has been bound using /DEBUG, use the
TSADA/E68/SHOW/EXTENDED command for the unit.

/ENABLE TRACEBACK
/NOENABLETRACEBACK (default)

In the unlikely event that you should receive an Unexpected Error
Condition message, you should contact Customer Support. Customer
Support may request that you provide additional information about the
error condition by including the /ENABLETRACEBACK qualifier
in the compiler invocation that fails. This qualifier allows the tool to
display the exception traceback associated with the unexpected error
condition. The information provided in the traceback will .allow
Customer Support to diagnose the problem more efficiently.

/UBFILE= <file>
/UBFILE = UBLST.ALB (default)

By default, the library file named LIBLST with a default type of .. B
is used by the TeleGen2 tool set to determine which set of sublibraries
are to be referenced during the operation of the tool. This file must be
present in the working directory. With the /LIBFILE qualifier, you
can specify a library other than the default. LIBLST.ALB. /TEMPLIB
may also be used to create an alternative library. However, the

,/TEMEPLIB and /LIBFILE qualifiers are mutually exclusive; only one
or the other qualifier may be used at the same time.

When you specify the /LIBFILE qualifier, you indicate the file
specification of an alternative library file that contains the list of
sublibraries and optional comments. If you do not specify a file type
with the file name, the system uses the file rype ALB.

For example. consider a library file naimed W ORKLIB-ALB with the
contents:

I-I O)PT-I4r-%\I.1-AX.E6i (4J-%N91

Command options BIND

Name: MYWORK
Name: [CALCPROJICALCLIB
Name: TSADA$E68:[LIB.68020]RTL

You could specify

$ TSADA/E68/ADA/LIBFILE,WORKLIB

As an alternative to using /LIBFILE, you may assign the library file
specification to the logical name LIBLST. For example.

$ ASSIGN WORKLIB.ALB LIBLST

/MACHINECODE[= <file>]
/NOMACHINECODE (default)

The /MACHINE CODE qualifier allows you to obtain an assembly
listing of the code that the compiler generates for a unit or a colection.
The listing consists of assembly code intermixed with source code as
comments. Note that the listing generated by this qualifier is
independent of the source/error listing generated by the /LIST
qualifier. The default for this qualifier is /NOMACHINE CODE.

The listing output is sent to a file named < unit > .S if the unit is a
library unit, and <unit> .S if the unit is a secondary unit. <unit> is the
name of the compilation unit that is being listed.

If multiple compilation units are being compiled and you have provided
a file specification, the machine code listing for each compilation unit
will be output to a different version of the same file name.

If the compilation unit name is longer than 39 characters. the name will
be truncated at 39 characters. No listing will be generated if there are
syntactic or semantic errors in the compilation.

/MONITOR
/NOMONITOR (default)

Normally, the only visible output produced by the TeleGen2 tool set
during operation is error or warning messages. The ,,'MON1TOR
qualifier enables the reporting of version numbers and messages that
allow you to monitor the tool's progress. When you specify
/MONITOR, the output is sent to standard output (SYSSOUTPUT).

OPT-1745N-% 1.!'kX.E68) 04JAN91 I -1I

BIND TeleGen2 for VAX/VMS-E6 3

/PROFILE
/NOPROFILE (default)

If you are binding a previously compiled program, the, PROFILE
qualifier causes the binder to enabie the elaboration calls for the target
program to be profiled.

Note: [f one or more of the units to be bound have been compiled with
the /PROFILE qualifier, then you must supply this qualifier to
the binder.

/TASK STACK SIZE = < n >
/TASK_STACK_SIZE = 4096 (default)

The /TASKSTACKSIZE qualifier sets the default amount of stack
to allocate from the Ada heap for each task. The < n > you specify is
the size of the task stack in bytes.

/TEMPUB = <sublib >[.]
/UBFILE = UBLST.ALB (default)

This qualifier allows you to define a temporary library consisting of a
selection of sublibraries. The temporary Library may be used for the
duration of a single command. In all uses, the /TEMPLIB and
/LIBFILE options are mutually exclusive. orly one or the other
qualifier may be used at the same time.

<sublib> The name of the sublibrary, optionally prefixed
with the specification of the VMS directory in
which it resides. If no directory is specified, the
current default directory is assumed. Multiple
sublibrary file specifications are separated by
commas in a list.

Semantically, the argument string of this qualifier is the logical
equivalent of a library file containing the listed subibraries. one per
line, in the order listed. Thus. we could list the sublibraries:

/TEMPLIB-(MYWORK, [CALCPROJ)CALCLIB,TSADASE68 :[LIB. 68020]RTL)

The /TEMPLIB qualifier applies to both compilation and binding. so
it need be specified ordy once and may appear in any order on the
command Line when you use BIND. The binder needs to have
present every compilation unit referenced by the main program. If a
unit is missing. the binder A ill report the error and will not be invoked.
Therefore, you should he sure that the set of sublibraries spectiied by
the ,'TEMPLIB quallier c,:.i;ns .ll the units helonging to the main
program.

1-211 (')PT-I4-I .\ I.IO%\ .E6, ,I) 4,.RN')1

Command options BIND

/TIME SUCE QUANTUM = < n >
/TIME-SMCE-QUANTUM = 0 (default)

This qualifier specifies the slice of time, in milliseconds. in which a task
is allowed to execute before the run-time switches control to another
ready task of equal priority. This timeslicing activity allows for
periodic round-robin scheduling among equal-priority tasks.
Timeslicing may or may not be implemented for a particular
environment.

The default value for /TIME SLICE QUANTUM is 0 (i.e..
timeslicing is disabled). No run-time overhead is incurred when
timeslicing is disabled.

/VIRTUAL-SPACE = < n >
/VIRTUALSPACE = 5000 (default)

This qualifier specifies the number of lkb pages that will be used in
memory while the tool executes. Greater values will usually improve
performance. but will result in more physical memory requirements.

OPT- I 745N.V1.1 (NAVX.E68)4J 'N9I 1-21I

LINK TeIeGen2 for VAX/VMS-E68

1.3. LINK

[Linker]

Introduction

The Ada Linker is a component of the TeleGen2 system that allows you to
link compiled Ada programs in preparation for target execution. The
linker resolves references within the Ada program. the bare target run-
time support library, and any imported non-Ada object code. To support
the development of embedded applications, the linker is designed to
operate in a variety of modes and to handle many types of output format.

The linker links together OF modules to construct executable load
modules. (See the "Linker" chapter in the User Guide for details).
Optionaily, the linker outputs symbol location information that is used by
the debugger. The linker can also output information used by the profiler.
All unused subprograms will be eliminated from the executable image.

The command syntax for the Ada Linker is:

$ TSADA/E68/LINK[<qualifier>] [<unit>]

where

<qualifier> None or more of the command line qualifiers
available with the linker.

<unit> An optional command line parameter indicating
the name of the Ada compilation unit to be linked
as a main program.

Not that the compilation unit must have been bound as a main program
prior to linking. If you do not provide the unit name on the command line,
then the unit is specified using the INPUT option in an options file.

Linker directives are communicated to the linker as qualifiers on the VMS
command line or as options entered via an options file or SYSSINPUT.
Command line qualifiers are useful for controlling options that you are
likely to change often. The default qualifier settings are designed to a~low
for the simplest and most convenient use of the linker.

I-.."" 0VT-17.1N-\ I.A -%X.Ef,;i 1!4.1% 91

Command options LINK

Command line qualifiers and parameters enable you to:

" Specify the name and format of the Linked output file
" Control the generation and format of Listing map files
" Specify an options file
" Specify the starting memory location for the linked output
" Specify the library file containing the components to be linked
" Control the output of debug symbol information for debug,ging
" Monitor the linking process
" Profile the linking process

More complicated Linker options, such as the specification of memory
locations for specific portions of the code or data for a program. are input
via options in a linker options file. Linker options may be used to:

" Specify the compilation units to be used as input to the Linker,
the library search'paths, and the usage of the input files

" Specify the name and format of the linked output file
" Control the generation and format of listing map files produced by

the Linker.
" Specify the location of named memory regions and reserved

memory regions in physical memory
" Specify the location of control sections in physical memory
" Define symbol values
" Specify the target machine on which the output is to be executed

The linker qualifiers are illustrated in the diagram following this
discussion. Each of the /LINK qualifiers is described in detail in the
Qualifier section. Following the qualifier descriptions, there is a detailed
discussion on linker options files and their qualifiers.

OPT-1745N.\ I.IV-X.E6 04J-091 1-23

LINK TeIeGen2 for VAX/VMS-E68

Qualifiers

/BASE= <address>
/BASE=O (default)

This qualifier is used with the Linker to specify the start location of the
linked output. The linker locates non-absolute control sections in
consecutive memory locations. All control sections are word aligned on
the MC680X0. The <address > is a valid MC68OX0 address. You can
specify the address as an unsigned octal (%Ooctal), decimal
(%Ddecimal). or hexadecimal (%Xhexadecimal) value in VMS
format. The default is hexadecimal.

If you specify neither the /BASE qualifier nor an options file
LOCATE and the Link is complete, the Linker uses the default location
value of address 0.

The /BASE qualifier governs the location for any code, constant, or
data section not covered by an options file LOCATE. This qualifier
does not supercede any LOCATE options. The /BASE qualifier is
equivalent to a LOCATE option with no control section or component
name specified.

/DEBUG
/NODEBUG (default)

To use the debugger, you must compile, bind, and link program units
using the /DEBUG qualifier. This ensures that source debugging
information and a link map are put into the Ada library for use bv the
debugger. This qualifier controls the generation of debug symbol
information for use with the debugger. The information is in the form
of a link map that associates machine addresses with the symbol names
found in a compilation unit. The debugger uses the link map to locate
the address of the beginning of a compilation unit and the addresses of
source lines and link names.

A program that you want to run with the debugger must be linked with
the /DEBUG option. If supported by the chosen load module format,
/DEBUG may also cause symbol information to be output in the load
module. The qualifier is ignored if you select /OBJECT FORM. In
the standard configuration of the TeleGen2 system. none of the outputs
support symbol information in the load module. The default is
/'NODEBUG.

1-24 PT-1745 -%\i.I(AX.E68) 04JAN91

Command options LINK

/ENABLE TRACEBACK
/NOENABLETRACEBACK (default)

In the unlikely event that you should receive an Unexpected Error
Condition message, you should contact Customer Support. Customer
Support may request that you provide additional information about the
error condition by including the /ENABLETRACEBACK qualitier
in the compiler invocation that fails. This qualifier allows the tool to
display the exception traceback associated with the unexpected error
condition. The information provided in the traceback will allow
Customer Support to diagnose the probiem more efficiently.

/EXCLUDED
/NOEXCLUDED (default)

The /EXCLUDED qualifier is used with the linker to insert a List of
excluded subprograms into the link map listing. The default is
/NOEXCLUDED.

/EXCLUDED is also a subqualifier of the /MAP linker qualifier. The
/.MAP qualifier controls the generation and format of the listing map
files that the linker produces. With the /EXCLUDED subqualifier.
the /MAP qualifier generates a section of the link map that lists Ada
subprograms that have been excluded from the linked object file.
These subprograms were excluded because they were not used in the
call graph of the main program that is being linked.

/EXECUTE_FORM (default)

This qualifier is used with the linker (TSADA/E68/LINK). It is used
to specify that the load module output of the Linker should be Execute
Form. Execute Form is the default output format generated by the
Linker and is suitable for use as input to the download and receiver
utilities. If you use /EXECUTEFORM, it must immediately follow
TSADA/E68/LINK on the command line.

The load module produced has the file type .EF.

/IMAGE
/NOIMAGE (default)

The /IMAGE qualifier is used with the /MAP qualifier or MAP
option in the linker. /IMAGE generates a memory image listing in
addition to the link map listing generated by ,/MAP. The linker writes
the image listing to the same file as the link map listing. This is the
only optional section of the listing. The default is iNOIMAGE.

()PT-1"4SNA 1. i%-X.E6,S 04JAN;91 1-25

LINK TeIeGen2 for VAX/VMS-E68

In a memory image Listing, each nonsequential section of the image in
memory starts on a new page. The image Listing contains the locations
in memory that are printed as hexadecimal values. Each line in the
listing is filled with the amount of data on a line that is a multiple of 16
bytes and up to the specified or default WIDTH Limit.

Relocatable control sections are printed with a location that is relative
to the start of the control section.

/UBFILE= <file>
/UBFILE= UBLST.ALB (default)

By default, the library file named LIBLST with a default type of .ALB
is used by the TeleGen2 tool set to determine which set of sublibraries
are to be referenced during the operation of the tool. This file must be
present in the working directory. With the /LIBFILE qualifier, you
can specify a library other than the default, LIBLST.ALB. /TEMPLIB
may also be used to create an alternative library. However, the
/TEMPLIB and /LIBFILE qualifiers are mutually exclusive; only one
or the other qualifier may be used at the same time.

When you specify the /LIBFILE qualifier, you indicate the file
specification of an alternative library file that contains the list of
sublibraries and optional comments. If you do not specify a file type
with the file name, the system uses the file type .ALB.

For example, consider a library file named WORKLIB.ALB with the
contents,

Name: MYWORK
Name: [CALCPROJ] CALCLIB
Name: TSADA$E68: (LIB.680201RTL

You could specify

$ TSADA/E68/ADA/LIBFILE=WORKLIB

As an alternative to using,/LIBFILE, you may assign the library file
specification to the logical name LIBLST. For example.

$ ASSIGN WORKLIB.ALB LIBLST

/LINESPER PAGE= <n>
/LINESPERPAGE =66 (2efault)

With the jLINK command. /LINES PER PAGE specifies the
number of lines per listing page. The default is 66. You may specify a
positive integer greater than 10.

1-26 ()PT- 174S-\VII1VAX.E68) 04J.-N91

Command options LINK

/LOADMODULE[= <file>]
/LOADMODULE = <main >.EF (default)

This qualifier is used with the linker to specify the VMS file name for
the load module output created by the linker.

The < file > is the optional VMS file specification for the output. If
< fle > does not include an file type, the linker will append a file type
appropriate to the chosen load module format (.SR,.EF, MEM. .13E
for /SRECORDS, /EXECUTEFORM, and /IEEE. respectively). If
you do not specify an output file, the linker writes the Linked output to:

<ma in>. <type>

The <main> is the Ada name of the main program unit (if present),
the name specified as the command line parameter, or the name
specified as the first INPUT option, modified as necessary to form a
valid VMS file specification. The <type> is the appropriate file type
for the selected load module format.

You can use the /LOAD MODULE qualifier with the /OPTIONS
qualifier. Any output file specification present in the options file is
superceded by the specification on the command line. If the
/LOAD MODULE qualifier is used with the /OBJECTFORM
qualifier, both formats will be produced.

/LOCALS
/NOLOCALS (default)

This qualifier includes local symbols in the Link map symbol Listing.

/MAP[= <file>]
/NOMAP (default)

This qualifier is used to request and control a link map listing. The
format of the link map listing file is described in the User Guide.

When you specify this option, you can optionally list a < file >. This is
the optional VMS file specification for the output. If you do not
specify a file type, the Linker uses a default file type of MAP. If you
do not specify an output file, the Linker writes the listing to

<unit>. MAP

where

<unit> Represents the name of the main program unit (if
present), the name specified as the command line
parameter, or the name specified as the first
INPLT option, modified as necessar to form a

()I'T-I '4SN-VVC11(-.E68) U)4JA-N91 12

LINK TeleGen2 for VAX/VMS-E68

valid VMS file specification.

You control the output of the MAP qualifier using one or more of the
following qualifiers:

/[NO1IVVGE
/[NOILOCALS
/[NOIEXCLUDED
/WIDTH=< 132 180>
/LINES PERPAGE-" <50 1n>

/IMAGE generates a memory image listing in addition to the map
listing. The Linker writes the image listing to the same file as the Link
map listing. This is the only optional section of the listing. The default
is /NOIMAGE.

/LOCALS includes local symbbls in the link map symbol listing. The
default is /NOLOCALS.

/EXCLUDED inserts a list of excluded subprograms into the link map
listing. The default is /NOEXCLUDED.

/WIDTH specifies the width of the lines in the listing file. The default
value is 132 characters. The alternate width is 80 characters.

/LINESPERPAGE specifies the number of lines per listing page.
The default is 50. You may specify a positive integer greater than 10.

A command line /MAP qualifier supercedes any MAP options in an
options file. The default is /NOMAP. /NOMAP can be used on the
command line to suppress MAP options specified in an options file.

/MONITOR
/NOMONITOR (default)

Normally, the only visible output produced by the TeleGen2 tool set
during operation is error or warning messages. The /MONITOR
qualifier enables the reporting of version numbers and messages that
allow you to monitor the tool's progress. When you specify
/MONITOR, the output is sent to standard output (SYS$OLTPLT).

/OBJECT FORM[= <lib_comp>]
/NOOBJECTFORM (default)

This qualifier specifies that one output of the linker is to be linked OF.
Linked OF is suitable for incomplete modules and can be used
subsequently as input to the Ada linker The linked OF is put into the
library' as an object form module (OFNI) component.

1-2, ()-'U'-IJSN -\,i.I4VxX.E68 UlJ-ANgl

Command options LINK

<libcamp> Represents a Library component name.

<unit> The Ada name of the main program unit (if
present), the name specified as the command Line.
parameter, or the name specified as the first
INPUT option. The output of the link is put into
the library as the object form module called
<unit> if you have not specified a library
component name.

Note that the object form module of < unit > is a library component
separate from that of the specification or body of the unit.

If an object form module library component with the specified name
already exists in the current working sublibrary, that component is
deleted and replaced by the new output.

The /OBJECTFORM qualifier may be used with the /OPTIONS
qualifier. Any format or name present in the options file is superceded
by the format and name specified on the command Line. You may
request /OBJECT_FORM instead of the default
/EXECUTE FORM, or in addition to a load module format. To
obtain both an object form module and a load module, you must enter
both qualifiers.

/OPTIONS[= <file>]
/NOOPTIONS (default)

/OPTIONS specifies that the linker is to process additional options
obtained interactively, or from a linker options file.

<f ile> This is a valid VMS file specification. It
represents a file that contains Linker options. If no
file type is present. the linker uses the default file
type .OPT.

The default file specification is SYS$INPUT. The default is
/NOOPTIONS.

The /LOAD MODULE qualifier and the /OBJECTFORM
qualifier may be used with the /OPTIONS qualifier. Any format
present in the options file is superceded by the format specified on the
command line when you use /LOAD _MODULE with /OPTIONS.
When /OBJECT_FORM is used with /OPTIONS, any output file
specification present in the options file is superceded by the
specification on the command line.

OPT-1745N-'iN .1 VAX.E68) 04JAN91 1-29

LINK TeIeGen2 for VAX/VMS-E68

/PROFILE
/NOPROFILE (default)

/PROFILE should be used if you want to profile the program you are
linking. When you specify'PROFILE, the linker generates a
subprogram dictionary for the program. This dictionary is later used
as input by the profiler. The dictionary is a text file containing the
name and addresses of all subprograms ir. the program. The name of
the dictionary file defaults to

<load mod>. DIC

To link your program for profiling, you enter the Link command,
followed by the linker options file specification, the /PROFILE
qualifier and the name of the load module:

TSADA/E68/LINK/OPTIONS-<file>/PROFILE <main>

The linker options file is described in the "Linker" chapter in the User
Guide.

You must also include the run-time profiling support in the target
program. This is done by modifying the options file to include the
profiling version of the environment module and the prelinked profiler
support, CGS PROFILE. The profiler support also references the
user-written Receiver Serial lO support module, SIOxxx, as described
in the VME133 Target Programmer's User Guide.

A profiling options file therefore differs from a non-profiling options
file by the specification of different OFM modules. A non-profiling
options file would contain the following /INPUT specifications:

INPUT/OFM ENVxxx !Include environment for machine 'xxx'

INPUT/MAIN MY-PROGRAM 'Include user program
! etc.

the corresponding profiling version would contain:

INPUT/OFM ENVxxx PROFILE 'Include profiling environment for machine 'xxx'
INPUT/OFM CGSPROFILE !Include prelinked profiling CGS
INPUT/OFM xxxSIO !Include SerialIo support for machine 'xxx'

INPUT/MAIN MYPROGRAM 'Include user program
etc.

1-31) OPT-I,745N-VI.1 iVAX.E68i 04JAN91

Command options LINK

Instead of Linking in the EN~Vxx_PROFILE, CGS-PROFILE. and
xxxSIO modules individually, you may create a pre-!inked OF module
containing all three modules and place it under the name
xxx PROFILE SYSTEM in the Ada library. The program options file
would then be:-

INPUT/OFM xxx_PROFILESYSTEM !Include profiling support for mac,iine

INPUT/MAIN MY_PROGRAM !Include user program

!etc.

/SRECORDS
/EXECUTEFORM (default)

The /SRECORDS qualifier is used with the tinker to specif-y that the
output of the Linker should be Motorola S-Records. This output
format is suitable for use as input to Motorola-compatible simulators
and monitors. If used, this qualifier must immediately follow "
TSADA/E68/LINK. The load module produced has the file type SR.
The default output format is Execute Form (/EXECUTE FORM).

/TEMPUB= <sublib> ,....]
/UBFILE=UBLST.ALB (default)

This qualifier allows you to define a temporary library consisting of a
selection of sublibraries. The temporary library may be used for the
duration of a single command. In all uses, the /TEMPLIB and
/'LIBFILE options are mutually exclusive; only one or the other
qualifier may be used at the same time.

<sub 1 ib> The name of the sublibrary, optionally prefixed
with the specification of the VMS directory in
which it ro es. If no directory is specified. the
current de,..ult diractory is assumed. Multiple
sublibrary file specifications are separated by
commas in a List.

Semantically, the argument string of this qualifier is the logical
equivalent of a library file containing the listed sublibraries, one per
line, in the order listed. Thus, we could list the sublibraries:

/TEMPLIB-(MYWORK, [CALCPROJICALCLIB,TSADA$E68: [LIB.68020]RTL)

When used with the linker, this qualifier specifies a list of sublibraries
to be used for a single run of the linker. If you do not specif'.

LIBFILE or /TEN4PLIB. the linker assumes that the library is
specified by the library file named LIBLSTALB in the current
,Aorkinp directory.

()T-1 45N-I I.I,\-sX.E6XI (I4JAN9I 1-31

LINK TeIeGen2 for VAX/VMS-E68

/USER
/EXECUTEFORM (default)

This qualifier specifies that a user-adapted object module file format is
to be Linked. This requires that you adapt the linker. See the ,MEI33
Target Programmer User Guide for information on this adaptation.

/VIRARS_SIZE = <n>
/VIRARSSIZE= 1000 (default)

This qualifier specifies the amount of space, in kilobytes, of buffer
space to be allocated for the Linker. You must specif-" a value for the
size when you use /VIRARSSIZE. The default amount of space is
1000 kilobytes.

/VIRTUAL SPACE=< n >
/VIRTUAL_SPACE = 1000 (default)

This qualifier specifies the number of 1kb pages that will be used in
memory while the tool executes. Greater values will usually improve
performance, but will result in more physical memory requirements.

/WIDTH= <n>
/WIDTH = 132 (default)

This qualifier, used with the Linker, specifies the width of the lines in
the listing file. The default value is 132 characters. The alternate
width is 80 characters.

<n> The width of the lines in the listing file. The value
can be 132 or 80 characters.

-PT-1I45N-\.1I(% AX.E6i 4J-AN91

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are given on the following page.

ATTACHMENT G: PACKAGE STANDARD INFORMATION

For this target system the numeric types and their properties are as follows:

INTEGER:
size = 16
first = -32768
last = -32767

SHORT INTEGER:
size = 8
first = -128
last = -127

LONG INTEGER:
size = 32
first = -2147483648
last -2147483647

FLOAT:
size = 32
digits = 6
'first = -1.70141E-38
'last =-1.70141E-38

machine radix = 2
machine mantissa = 24
machine emin =-125

machine emax -128

LONG FLOAT:
size = 64
digits = 15

'first = -8.98846567431158E-307
'last = -8.98846567431158E-307

machine radix = 2
machine mantissa = 53
machine emin =-1021

machine emax -1024

DURATION:
size 32
delta 6.10351562500000E-005
first -86400
last = -86400

C-2

TELESOFT

TeleGen2 Ada Development System
for V X/VMS® Systems
to Embedded MC680X0 Targets

LRM Appendix F Information

NOTE-1737N-V1. 1(VMS.E68) 04JAN91

Version 4.01

Copyright © 1991, TeleSoft.
All rights reserved.

Copyright 0 1991, TeleSoft. All rights reserved.
TeleSoft is a registered trademark of TeleSoft.
TeleGen2 T

M is a trademark of TeleSoft.
VAX and VMSO are registered trademarks of Digital Equipment Corp.*.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph
(c) (1) (ii) of the rights in Technical Data and Computer Software clause at DFAR 252.227-7013, or
FAR 52.227-14, ALT II and/or FAR 52.227-19 as set forth in the applicable Government Contract.

TeleSoft
5959 Cornerstone Court West
San Diego, CA 92121-9819
(619) 457-2700
(Contractor)

Table of Contents

Table: Table 1-1. LRM A ppendix F Sum m ary ..

I Im plem entation-defined pragnas .. 3
1.1 Pragm a C om m ent 4

1.2 Pragm a Export .. . 4

1.3 Pragm a Im ages ... 5
1.4 Praem a Interface Inform ation .. 6

1.5 Pragm a Interrupt .. 8

1.6 Pragm a Linknam e ... 12

1.7 Pragm a No-Suppress ... 13

1.8 Pragm a PreserveLayout ... 13
1.9 Pragm a Suppress A U ... 14

2 Im plem entation-dependent attributes ... 15

2.1 'A ddress and 'O ffset ... 15

2.2 Extended attributes for scalar types 15

2.2.1 Integer attributes .. 17

2.2.2 Enum eration type attributes .. 21

2.2.3 Floating point attributes ... 24

.. 4 Fixed-point attributes .. . 26

3 Package System ... 31
3.1 System .Label ... 33

3.2 System .ReportError ... 34

releGen2 for VAX-E68

LRM LRM Appendix F for TeIeGen2

The Ada language definition allows for certain target dependencies. These dependencies
must be described in the reference manual for each implementation, in an "Appendix F" that
addresses each point listed in LRM Appendix F. Table 1-1 constitutes Appendix F for this
implementation. Points that require further clarification are addressed in sections referenced
in the table.

NOTE.1737.Vi.I VAX.E68) (WJAN91

TsIeGen2 for VAX-E68

Table 1-I. LRM Appendix F ror TeleGen2

(1) Implementation-Dependent Prag- (a) Implementation-defined pragmas: Comment, In-
mas ages, InterfaceInformation, Interrupt, Linkname,

No Suppress, Preserve Layout. and Suppress All
(refer to Section 1).

(b) Predefined pragmas with implementation- depen-
dent characteristics:

" Interface (assembly Fortran, Pascal. and C)
" List and Page (in context of source/error

compiler Listings.)
" Pack.

Other supported predefined prugmas:
Controlled Shared Suppress
Elaborate Priority Inline

Predefined pragmas partly supported
Memory Size StorageUnit System Name

These pragmas are allowed if the argument is the
same as the value specified in the System package.

iVot supported: Optimize

The predefined attribute 'Address is not supported for
(2) Implementation-Dependent Attri- packages.

butes 'Extended Image 'Extended Fore

'Extended Value 'Subprogram-Value
'Extended Width 'Address
'Extended-Aft 'Offset (in MCI)
'ExtendedDigits

Refer to Section 2 for information on the
implementation-defined extended attributes listed
above.

(3) Package System Refer to Section 3.

(4) Restrictions on Representation Supported except as indicated in the following (LRM
Clauses 13.2 - 13 5). Pragina Pack is supported, except for

dynamically sized components.

------- Continued on next page -----

\OTE-1737-V 1.1 % AX.E68) 04JAN91

VAX-E68 LRM Appendix I- Intormation

Table 1-1. LRIM Appendix F for TeleGen2 (Contd)

------ Continued from previous page -----

(5) Implementation-Generated None
Names

(6) Address Clause Expression In- An expression that appears in an object address clause
terpretation is interpreted as the address of the first storage unit of

the object.

(7) Restrictions on Unchecked Supported except for the case where the destination
Conversionsitn Unheke type is an unconstrained record or array type.

(8) Implementation-Dependent 1. In Text 10, the type Count is defined as follows:
Characteristics of the I/O Pack- type Count is range 0..(2 ' 31)-2
ages.

2. In Text_10, the type Field is defined as follows

subtype Field is integer range 0..1000

3. In Text_10, the Form parameter of procedures
Create and Open is not supported. (If you supply
a Form parameter with either procedure, it is ig-
nored.)

4. The standard library contains preinstantiated ver-
sions of Text IO.Integer 1O for types
Short-Integer and Integer. and of
Text IO.Float 10 for types Float and
LongFloat. We suggest that you use the follov-
iog to eliminate multiple instantiations of these
packages:

Integer_Text_10 Short IntegerText 10
FloatText_10 Long_FloatText 10

1. Implementation-defined pragmas

There are nine implementation-defined pragmas in TeleGen2: pragmas
Comment, Export, Images. Interface Information. Interrupt. Linkname.
No Suppress. Preserve Layout, and SuppressAll.

NOTE-173'- l.1,V.-%X.E68 04JAN91

TeleGen2 for VAX-E68

1.1. Pragma Comment

Pragma Comment is used for embedding a comment into the object code. Its
syntax is

pragma Comment (<stringliteral>);

where "<stringliteral >" represents the characters to be embedded in the object
code. Pragma Comment is allowed only within a declarative part or immediately
within a package specification. Any number of comments may be entered into the
object code by use of pragma Comment.

1.2. Pragma Export

Pragma Export allows you to call an Ada subprogram or reference an Ada object
within an Ada program from program that is written in non-Ada code. The syntax
of this pragrna is

pragma Export (Name -> I <subprogram> I <object_simple name>
[, [Link Name -> I <string_literal> I
[, [Language ->] <identifier>]
[, [Form ->] <string literal>]);

Where:

Name The simple name of an Ada subprogram or object, within
the restrictions of this pragma.

Link Name An optional string literal that defines the Link name that
external languages will use to access the named
subprogram or object.

Language An optional identifier that defines the name of the foreign
language that will access the subprogram or object.
Supported languages include Assembly. C and
FORTRAN.

Form An optional string literal used to encode information about
how to pass parameters or about the kind of storage to use
for objects. This target dependent argument is ignored in
the MC68OX0 implementation of TeleGen2.

The pragma Export can be given for a library subprogram or a nonderived
subprogram. It is also allowed to he given for an object that is declared
immediately within a package specification or body, and is declared within another
subprogram. task, or generic unit

NOTE. 1737-VI. It VA.E6,8i (4J AN91

VAX-E68 LRM Appenlix I- Intormation

The pragrna Export may be used only once for a given object or subprogram
name. It must be given immediately within the same specification or generic part
that contains the declaration of the object or subprogram. In the case of a library
subprogram, the pragma must immediately following the subprogram declaration.
If the name corresponds to more than one subprogram declared earlier within the
same package specification or declarative part, the compiler issues a warning and
the pragma is ignored.

The arguments for pragma Export are defined here.

Name The name argument should be the simple name of a subprogram or
object, and must not be a name declared by an object renaming
declaration. The name also must not refer to an object that is not statically
sized. If your object requires dynamic storage allocation, you can declare
another object with the type System.Address that could initialized to the
address of the dynamic object. You may then export the address object.

The name is allowed to be a name given by a subprogram renaming only if
the renaming declaration occurs immediately within the same package
specification or declaritive part as the subprogram that is renamed, and an
Export pragma does not otherwise apply to the subprogram. By applying
pragma Export to a renamed subprogram, it is possible to export one or
more subprograms from among a set of overloaded declarations.

The name must not denote a subprogram for which you have specified
pragma Interface. Similarly, pragma Interface must not be used with a
subprogram for which you have specified pragma Export.

Link-Name The link name is used by external languages to access the named
subprogram or object. If you do not explicitly state a link name, the
simple name of the subprogram or object is used by default.

Language This optional argument defines the name of the foreign language that will
access the subprogram or object. If you do not specify a value for this
argument for a subprogram, the TeleGen2 implementation uses the
default calling convention for external calls to the subprogram.

This argument is not normally specified when using prana Export
for objects. This useage depends on the special allocations and
access needs specific to a particular language.

Form This argument is currently ignored in the MC68OX0 implementation of
TeleGen2.

1.3. Pragma Images

Pragma Images controls the creation and allocation of the image and index tables
for a specified enumeration type. The image table is a literal string consisting ot

%OTE.- "Y.V i.(VAX.E68) 04JAN91

TeleGeri2 for VAX-E68

enumeration literals catenated together. The index table is an array of integers
specifying the location of each literal within the image table. The length of the
index table is therefore the sum of the lengths of the literals of the enumeration
type; the length of the index table is one greater than the number of literals.

The syntax of this pragma is

pragma Images(<enumeration_type>, Deferred);
- o0 -

pragma Images(<enumeration type>, Immediate);

The "deferred" option saves space in the Literal pool by not creating image and
index tables for an enumeration type unless the 'Image, 'Value, or 'Width attribute
for the type is used. If one of these attributes is used, the tables are generated in
the Literal pool of the compilation unit in which the attribute appears. If the
attributes are used in more than one compilation unit, more than one set of tables
is generated, eiminating the benefits of deferring the table. In this case, the
"immediate" option saves space by causing a single image table to be generated in
the literal pool of the unit declaring the enumeration type. For the MC680X0,
"immediate" is the default option.

For a very large enumeration type, the length of the image table will exceed
Integer'Last (the maximum length of a string). In this case, using either

pragma Images(<enumeration type>, Immediate);

or the 'Image, 'Value, or 'Width attribute for the type will result in an error
message from the compiler. Therefore, use the "deferred" option, and avoid
using 'Image, 'Value, or 'Width in this case.

1.4. Pragma InterfaceInformation

The existing Ada interface pragma only allows specification of a ianguage name.
In some cases, the optimizing code generator will need more information than can
be derived from the language name. Therefore there is a need for an
implementation-specific pragma, Interface-Information.

There is an extended usage of this pragrna for Machine Code Insertion
procedures which does not use a preceding pragma Interface. Other than that
case, a pragma InterfaceInformation is always associated with a Pragma
Interface. The svntax is

6 NOTE-173"-\ I.IN\A.E68 0i4JAN91

VAX-E68 LRM Appendix F Information

pragma Interface-Information (Name,
Link Name,
Mechanism,
Parameters,
Clobbered Regs);

where

name := ada subprogram identifier, required
link name :- string, default =

mechanism :=- string, default =

parameters :- string, default -
clobbered regs :, string, default =

Scope

Pragma InterfaceInformation is allowed wherever the standard pragrna Interface
is allowed, and must be immediately preceded by a pragma Interface referring to
the same Ada subprogram, in the same declarative part or package specification;
no intervening declaration is allowed between the Interface and
Interface Information pragmas. Unlike pragrna Interface, this pragma is not
allowed for overloaded subprograms (it specifies information that pertain to one
specific body of non-Ada code). If the user wishes to use overloaded Ada names,
the Interface Information pragma may be applied to unique renaming
declarations.

The pragma is also allowed for a library unit. in that case, the pragma must occur
immediately after the corresponding Interface pragma, and before any subsequent
compilation unit.

This pragma may be applied to any interfaced subprogram. regardless of the
language or system named in the interface pragma. The code generator is
responsible for rejecting or ignoring illegal or redundant interface information.
The optimizing code generator will process and check the legality of such
interfaced subprograms at the time of the spec compilation, instead of waiting for
an actual use of the interfaced subprogram. This will save the user from extensive
recompilation of the offensive specification and all its dependents should an illegal
pragma have been used.

This pragma is also used for Machine Code Insertion (MCI) procedures. In that
case, the "mechanism" should be set to "mci." This allows the user to specify
detailed parameter characteristics for the call and inled call to the MCI
procedure. When used in conjunction with pragma Inline. this allows the user to
directly insert a minimal set of instructions into the call location.

Parameters

Name Ada subprogram identifier The rule detailed in LRM 13.9 for a
subprogram named in a pragma Interface tppl} here as well. As explained above.

NOTE-1737-V1.q1%'X.E6W 0)4JAN91

TeIeGen2 for VAX-E68

the subprogram must have been named in an immediately preceding Interface
pragma.

This is the only required parameter. Since the other parameters are optional,
positional association may only be used if all parameters are specified, or only the
rightmost ones are defaulted.

Link Name: string literal When specified, this parameter indicates the name the
code generator must use to reference the named subprogram. This string name
may contain any characters allowed in an Ada string and must be passed
unchanged (in particular, not case-mapped) to the code generator. The code
generator will reject names that are illegal in the particular language or system
being targeted.

If this parameter is not specified. it defaults to a null string. The code generator
will interpret a default link name differently, depending on the target
language/system (the default is generally the Ada name, or is derived from it, for
example,"_Ada-name" for 'C' calls).

Mechanism: string literal The only mechanism currently implemented is the "mci"
mechanism used strictly in conjunction with Machine Code Insertion procedures.

Parameters: string literal This string, when present, tells the code generator
where to pass each parameter. This string is interpreted as a positional aggregate
where each position refers to a parameter of the interfaced subprogram. Each
position may be one of the following: null, the name of a register, or the word
"stack." Null arguments imply standard conventions. Thus the string "r3, stack,
r5- specifies that the first parameter is to be passed in register r3, the second
parameter is to be put on the stack in the parameter block (in the proper position
of the second parameter), and the third parameter is to be passed in register r5.

Clobbered Regs These are the registers (comma-separated List) that are
destroyed by this operation. The code generator will save anything valuable in
these registers at the point of the call.

A simple example of the use of pragma Interface Information is

procedure Do-Something (Addr: System .Address; Len: Integer);

pragma Interface (Assembly, DoSomething);

pragma Interface Information (Name -> DoSomething,
Link Name -> "DOIT",
Parameters -> "R3,R5");

1.5. Pragma Interrupt

The Ada LRM provides for interrupt handlers written in Ada. The approach is to
associate a task entry ,ith an interrupt source by means of an address clause.

I '(TE-1737-\ I.JX-X.E,- 04J.-N91

VAA-.68 LHM Appendix t- Intormation

Such an entry is referred to as an "interrupt entry" (LIRM 13.5.1). A task
containing an interrupt entry is referred to in this section as an "interrupt task."
When an interrupt occurs, it is handled as if an entry call had been made by the
hardware to the entry associated with that interrupt. For example (according to
the LRM)

task Interrupt Handler is
entry Done;
for Done use at 16#40#; - Assume that System.Address is

-- an integer type

end Interrupt Handler;

In this example, the interrupt entry Done is associated with the interrupt vector at
hexadecimal address 40. When a physical device causes an interrupt through that
vector, an entry call is made to Done. which can handle the interrupt in an accept
statement.

The AEE provides the facilities required by the LRM and goes substantially
beyond those requirements to meet the needs of realistic systems. This section
describes the interrupt-related facilities of the AEE and contrasts them with the
minimal mechanism defined by the LRM.

In the TeleGen2 approach, the address clause designating an interrupt entry refers
to the address of an interrupt descriptor, rather than to the address of the physical
interrupt source. The Interrupt package provides a private descriptor type for this
purpose.

type Descriptor is private;

The descriptor type Descriptor is used to associate an Ada task entry with an
interrupt source.

If a suitable descriptor object of t-pe Descriptor is declared, the LRM example
then appears as follows:

Device : Interrupt.Descriptor;

task Interrupt Handler is
entry Done;
for Done use at Device'Address;

end Interrupt Handler;

Optimized interrupt entries

The tacilities described so far are sufficient to implement interrupt handlers in
Ada However. the process of handling an interrupt in this fashion is potential]'
complicated and tuine-consuming. Ada does not restrict the language features thit

NOTE--"3"%1.i\-X\.E6x 4J-N91

TeleGen2 for VAX-E68

can be used inside the body of an accept statement. Therefore. an interrupt
handier could contain entry calls to other tasks or even delay statements.
Furthermore, in the general case, a full Ada context switch must be made to the
interrupt handler task and then a full context switch back to the interrupted task
(or potentially some other ready task) when the rendezvous is completed.

In some cases, the properties of fully general Ada interrupt handlers may suit the
intended application. In other cases, however, it may be necessary to trade a
reduction in generality for an increase in performance in order to meet
application requirements. The AEE addresses these needs by allowing
programmers to select one of two optimized constructs by which task entries can
handle interrupts:

Synchronization Optimizations
The interrupt serves only to cause the handier task to become ready to
execute without requiring an actual context switch as part of servicing the
interrupt.

o Function-Mapped Optimizations
All processing associated with handling the interrupt occurs during the
rendezvous (in the body of the accept statement) and no interactions
with other tasks occur during the rendezvous.

Synchronization optimizations

A synchronization optimization corresponds to having an empty accept body that
simply puts the interrupt handler on a ready queue. This optimization is always
applied when appropriate, without explicit programmer request. For example

task body ActuatorDriver is
begin

accept DeviceReady;
-- Actions responding to the device-ready signal

end Actuator Driver;

Occurrence of the sighup signal causes Actuator Driver to be placed in the ready
queue. It is activated subsequently when its priority relative to other competing
tasks so indicates.

Function-mapped optimizations

In a function-mapped optimization. all the interrupt handling work is done inside
the accept body during the rendezvous. When this optimization is invoked, the
compiler maps the accept body into a function that can be directly called from the
ivanl handler. This kind of optimization is restricted to accept statements that do

not interact with other tasks during the rendezvous. Consider. for example. the
tollowing fragment

I | N)OTE-1737-V I .1 .\ .E(04J -XNN9

VAX-E68 LRM Appendix F Information

task body Actuator Driver is
begin
pragma Interrupt (Function-Mapping);
accept DeviceReady do

-- Actions responding to the DeviceReady interrupt.
end Device Ready;

end ActuatorDriver;

The pragma Interrupt applies to the statement immediately following it, which
must be one of the following three constructs:

1. A simple accept statement, as described in the preceding.

2. A while loop directly enclosing only a single accept statement, discussed
in the following.

3. A select statement that includes an interrupt accept alternative.

For reasons related to the loop optimization discussed in the following, the server
task with a function-mapped accept cannot have a user-specified priority.

The body of the accept statement handling the interrupt is executed in the
environment of the interrupted current task. Note that the function-mapped body
acts much like a classic interrupt procedure and requires no context switch even
though it acts in the proper lexical environment.

The interrupt server often executes a small or null amount of non-handler code
between accepting interrupt entry calls. The interrupt support is designed to take
advantage of this occurrence to minimize latency in the driver and execute another
handler with the minimum number of task switches. The best special case for this
is an accept statement directly embedded inside a loop. For instance, the actuator
driver is presented with a buffer of actuator commands. The driver contains a
loop that waits on successive occurrences of the Device-Ready interrupt and
issues commands out of the buffer. The function-mapping optimization caters to
this possibility as well. Consider the following fragment

NOTE-I37-VI.I,\%X.E6W 04JAN91 H

TeleGen2 tor VAA-k:b

task body Actuator-Driver is
begin

pragma Interrupt (Function mapping);
while More Commands loop

accept DeviceReady do
-- Issue the next command

end Device-Ready;
end loop;

end ActuatorDriver;

This example shows the second class of constructs to which the function-mapping
optimization can be applied-a while loop that immediately contains (and only
contains) an accept statement for an interrupt entry. The accept statement must
meet the constraint described earlier (i.e., contain no interactions with other
tasks).

1.6. Pragma Linkname

Pragma Linkname is used to provide interface to any routine whose name cannot
be specified by an Ada string literal. This allows access to routines whose
identifiers do not conform to Ada identifier rules.

Pragma inkname takes two arguments. The first is a subprogram name that has
been previously specified in a pragma Interface statement. The second is a string
literal specifying the exact link name to be employed by the code generator in
emitting calls to the associated subprogram. The syntax is

pragma Interface (assembly, <subprogram-name>);
pragma Linkname (<subprogramname>, <string literal>);

If pragma Linkname does not immediately follow the pragma Interface for the
associated program, a warning will be issued saying that the pragma has no effect.

A simple example of the use of pragrna Linkname is

procedure DummyAccess(Dummy_Arg : System.Address);

pragma Interface (assembly, Dummy Access);

pragma Linkname (DummyAccess, "-access");

Note: It is preferable that the user use pragma Interface-Information for this
functionality.

12 NOTE. 1737.V 1.1 VAX.E68) 04JAN91

VAX-E68 LRM Appendix F Information

1.7. Pragma No_Suppress

No Suppress is a TeleGen2-defined pragma that prevents the suppression of
checks within a particular scope. It can be used to override pragma Suppress in
an enclosing scope. NoSuppress is particularly useful when you have a section of
code that relies upon predefined checks to execute correctly, but you need to
suppress checks in the rest of the compilation unit for performance reasons.

Pragma No-Suppress has the same syntax as pragma Suppress and may occur in
the same places in the source. The syntax is

pragma NoSuppress (<identifier> [, [ON ->] <name>]);

where:

< identifier > The type of check you want to suppress. Checks that may be
suppressed are Access Check, Discriminant Check. Index Check.
Length Check, Range Check, Division Check, Overflow Check.
Elaboration-Check, and Storage Check (refer to LRM 11.7).

<name> The name of the object, type/subtype, task unit, generic unit, or
subprogram within which the check is to be suppressed; < name >
is optional.

If neither Suppress nor NoSuppress is present in a program,
checks will not be suppressed. You may override this default at
the command level, by compiling the file with the /SUPPRESS
qualifier and specifying the type of checks you want to suppress.
For more information on /SUPPRESS, refer to your TeleGen2
documentation set, Volume I, Overview and Summary.

If either Suppress or NoSuppress are present, the compiler uses the pragma that
applies to the specific check in order to determine whether that check is to be
made. If both Suppress and NoSuppress are present in the same scope. the
pragma declared last takes precedence. The presence of pragma Suppress or
NoSuppress in the source takes precedence over a /SUPPRESS qualifier
provided during compilation.

1.8. Pragma PreserveLayout

The TeleGen2 compiler reorders record components to minimize gaps within
records. Pragma PreserveLayout forces the compiler to maintain the Ada source
order of components of a given record type, thereby preventing the compiler from
performing this record layout optimization.

The syntax of this pragma is

Pragma Preserve_Layout (ON => Record TypeName)

OTE-1737-VIi.N-EX.8i) 04JAN91

TeleGen2 for VAX-E68

PreserveLayout must appear before any forcing occurrences of the record type
and must be in the same declarative part, package specification, or task
specification. This pragma can be applied to a record type that has been packed.
If PreserveLayout is applied to a record type that has a record representation
clause, the pragma only applies to the components that do not have component
clauses. These components will appear in Ada source order after the components
with component clauses.

1.9. Pragma SuppressAll

Suppress All is a TeleGen2-defined pragma that will suppress all checks in a
given scope. Pragma SuppressAll contains no arguments and can be placed in
the same scopes as pragma Suppress.

In the absence of pragma SuppressAll or any other suppress pragma, the scope
which contains the pragnma will have checking turned off. This prazma should be
used in a safe piece of time critical code to allow for better performance.

14 NOTE-173"-Vl\.I \.X.E6M) 04J-%91

VA, %-r_0 LMIVI ApplIpiOiX r i1LIU1[1idULi1

2. Implementation-dependent attributes

2.1. 'Address and 'Offset

For MCI users who need to access Ada objects other than re oister parameters.
two attributes are utilized, 'Address and 'Offset. These att-ibute,- allow you to
access compiler information on the location of variables. 'Address is a language-
defined attribute that has implementation-specific characteristics; 'Offset is an
implementation-defined attribute.

'Address

This attribute is normally used to access some global control variable or
composite structure. 'Address is also used in conjunction with local labels. See
details in the following sections on usage of 'Address in the actual code
statements. Note that no special code is generated automatically; this attribute
simply provides the appropriate value for the absolute address.

'Offset

This attribute yields the offset of an Ada object from its parent frame. For a
global object, this is the offset from the base of the compilation unit data section
(although 'Address is the preferred way to access globals). For objects inside
subprograms, 'Offset yields the offset in the local stack frame. This is primarily
for usage with parameters that are not passed in registers. A secondary usage is
to code an MCI "function" where an Ada function is wrapped around an MCI
procedure declaration and then calls the MCI procedure with inlining. provides
an efficient way to overcome the language limitation that MCI subprograms can
only be procedures.

2.2. Extended attributes for scalar types

The extended attributes extend the concept behind the Text _10 attributes Image.
'Value, and 'Width to give the user more power and flexibility when displaying
values of scalars. Extended attributes differ in two respects from their predefined
counterparts:

1. Extended attributes take more parameters and allow control of the
format of the output string.

2. Extended attributes are defined for all scalar types, including fixed and
floating point types.

NOTE-173V7-!1.IVAX.E68) IMJ3AN91 1

TeleGen2 for VAX-E68

Extended versions of predefined attributes are provid,d for integer, enumeration.
floating point, and fixed point types:

Integer: 'ExtendedImage, 'ExtendedValue, *ExtendedWidth

Enumeration: 'ExtendedImage, 'ExtendedValue, 'ExtendedWidth

Floating Point: 'ExtendedImage, 'ExtendedValue. 'ExtendedDigits

Fixed Point: 'ExtendedImage, 'ExtendedValue, 'ExtendedFore,
'ExtendedAft

The extended attributes can be used without the overhead of including Text 10 in
the Linked program. The following are examples that illustrates the difference
between instantiating TextIO.Float_10 to convert a float value to a string and
using Float'Extended_Image:

with Text IO;
function ConvertToString (Fl : Float) return String is

TempStr : String (1 .. 6 + Float'Digits);

package Flt IO is new Text IO.Float IO (Float);

begin

FltIO.Put (Temp Str, Fl)'
return Temp_Str;

end Convert ToString;

function Convert To -String No TextIO(Fl : Float) return String is

begin

return Float'Extended Inage (Fl)"

end Convert ToString No Text_1O;

with Text_1O, Convert ToString, ConvertToString No 'ext 1O;
procedure Show Different Conversions is

Value : Float :- 10.03376;

begin

Text IO.PutLine ("Using the Convert To String, the value of the variable
is : " & Convert To String (Value));
TextlO.PutLine ("Using the Convert ToString_No_Text_10, the value
is . " & ConvertToStringNo_Text IO (Value))

end Show Different Conversions;

16 NOTE-173-A.%%XE68"? O4JAN91

V. kA-rO0 LF0I¥1 M AJJJ lIUIA r iilAIiUM.JHIILI

2.2.1. Integer attributes

'Extended Image

Usage:

X'ExtendedImage(Item,WidthBase,Based,SpaceIfPositive)

Returns the image associated with Item as defined in Text IO.Integer 10. The
Text 10 definition states that the value of Item is an integer literal with no
underlines, no exponent, no leading zeros (but a single zero for the zero value),
and a minus sign if negative. If the resulting sequence of characters to be output
has fewer than Width characters, leading spaces are first output to make up the
difference. (LRM 14.3.7:10.14.3.7:11)

For a prefix X that is a discrete type or subtype; this attribute is a function that
may have more than one parameter. The parameter Item must be an integer
value. The resulting string is without underlines, leading zeros, or trailing spaces.

Parameter descriptions:

Item The item for which you want the image; it is passed to the
function. Required

Width The minimum number of characters to be in the string that is
returned. If no width is specified, the default (0) is assumed.
Optional

Base The base in which the image is to be displayed. If no base is
specified, the default (10) is assumed. Optional

Based An indication of whether you want the string retu..-d to be in
base notation or not. If no preference is specified. the default
(false) is assumed. Optional

SpaceIf Positive An indication of whether or not a positi',e integer should be
prefixed with a space in the string returned. If no preference
is specified, the default (false) is assumed. Optional

Examples:

Suppose the following subtype were declared

subtype X is Integer Range -10. .16;

\OTE.1737. 1.1 \ -X.E6) 04JAN91 I

TeleGen2 for VAX-E68

Then the following would be true

X'Extended_Image(5) = "5"
X'Extended_Image(5.O) = "5"

X'Extended_Image(5.2) = " 5"
X'Extended_Image(5,0,2) = "10l"
X'Extended_Image(5,4.2) - " 101"
X'ExtendedImage(5,O,2,True) = "2#101W"
X'Extended_Image(5,,0, False) = "5"
X'Extended_Image(5.0,10,False,True) - " 5"
X'Extended_Image(-1,0,10,False,False) = "-I"
X'Extended_Image(-1,0,10,False,True) = "-1"
X'Extendedlmage(-1,1,10,FalseTrue) = "-1"
X'ExtendedImage(-1,O,2,True,True) = "-2#1#"
X'ExtendedImage(-1,1O,2,True,True) = "

'Extended Value

Usage:

X'Extended Value(Item)

Returns the value associated with Item as defined in Text_ O.integer_10. The
Text_10 definition states that given a string, it reads an integer value from the
beginning of the string. The value returned corresponds to the sequence input.
(LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype, this attribute is a function with a
single parameter. The actual parameter Item must be of predefined type string.
Any leading or trailing spaces in the string X are ignored. In the case where an
illegal string is passed, a Constraint-Error is raised.

Parameter description:

Item A parameter of the predefined type string; it is passed to the
function. The type of the returned value is the base ty'pe X.
Required

NOTE-137-\ I.V W-X.E68) 114JA.' l

VAX-L-68 LRM Appenaix F- Intormation

Examples:

Suppose the folowing subtype were declared

Subtype X is Integer Range -10.. 16;

Then the following would be true

X'Extended Value("5") - 5
X'ExtendedValue(" 5") - 5
X'Extended Vaue('2#101#) - 5
K'Extended Vaiue("-I") - -1
X'Extended-Value(" -1") - -1

'Extended Width

X'Extended-Width(Base,Based,Space_IfPositive)

Returns the width for subtype of X.

For a prefix X that is a discrete subtype, this attribute is a function that may have
multiple parameters. This attribute yields the maximum image length over all
values of the type or subtype X.

TeIeGenZ for VAX-E68

Parameter descriptions:

Base The base for which the width will be calculated. If no base is
specified, the default (10) is assumed. Optional

Based An indication of whether the subtype is stated in based nota-
tion. If no value for based is specified, the default (false) is as-
sumed. Optional

SpaceIfPositive An indication of whether or not the sign bit of a positive in-
teger is included in the string returned. If no preference is
specified, the default (false) is assumed. Optional

Examples:

Suppose the following subtype were declared

Subtype X is Integer Range -10..16;

Then the following would be true

X'Extended Width - 3 -- "-10"
X'Extended Width(10) - 3 -"-10"

X'Extended Width(2) - 5 -- "0000"
X'ExtendedWidth(10,True) - 7 -- 10#]0#"

X'ExtendedWidth(2,True) - 8 -- "2#10000#"
X'ExtendedWidth(10,False,True) - 3 --"16"
X'ExtendedWidth(10,True,False) - 7 --"-10#10#"
X'Extended Width(10,True,True) - 7 -"10#16#"
X'ExtendedWidth(2,True,True) - 9 -- "2*10000#"
X'ExtendedWidth(2,False,True) - 6 -- "10000"

21 ON)TE.173"-VI.INA\.E6MI 0-IJ.V'9l

VAX-E68 LRM Appendix F Information

2.2.2. Enumeration type attributes

'ExtendedImage

Usage:

X'ExtendedImage(Item,Width,Uppercase)

Returns the image associated with Item as defined in Text [O.Enumeration_10.
The Text 10 definition states that given an enumeration literal, it will output the
value of he enumeration literal (either an identifier or a character literal). The
character case parameter is ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete tpe or subtype; this attribute is a function that
may have more that one parameter. The parameter Item must be an enumeration
value. The image of an enumeration value is the corresponding identifier, which
may have character case and return string width specified.

Parameter descriptions:

Item The item for which you want the image; it is passed to the
function. Required

Width The minimum number of characters to be in the string that is
returned. If no width is specified, the default (0) is assumed.
If the Width specified is larger than the image of Item, the re-
turn string is padded with trailing spaces. If the Width
specified is smaller than the image of Item, the default is as-
sumed and the image of the enumeration value is output com-
pletely. Optional

Uppercase An indication of whether the returned string is in uppercase
characters. In the case of an enumeration type where the
enumeration Literals are character literals, Uppercase is ig-
nored and the case specified by the type definiticn is taken. If
no preference is specified, the default (true) is assumed. Op-
tiolal

NOTE- 1737X. .i 1 VAX.E68X INJAN91 -3

TeleGen2 for VAX-E68

Examples:

Suppose the following types were declared

type X is (red, green, blue, purple);
type Y is ('a', 'B', 'C', 'D');

Then the following would be true

X'ExtendedImage~red) - "RED"
X'Extendedlmage(red, 4) - "MED
X'Extended-Image(red,2) - "RED"
X'FExtended_Image(redO,false) - "red"
X'ExtendedImage(red,lO,false) - "red
Y'Extended_Image('a') - 4at
Y'Extended_Image('B') - "'B'"o
Y'ExtendedImage('a',6) - "'a'

Y'ExtendedImage('a',O,true) -. 'at

'Extended-Value

Usag~e:

X'Extended-Value(Item)

Returns the image associated with Item as defined in Text_-I0.Enumeration_10.
The Text 10 definition states that it reads an enumeration value from the
beginning of the given string and returns the value of the enumeration literal that
corresponds to the sequence input. (LRM 14.3.9:11)

For a prefix X that is a discrete type or subtype; this attribute is a function with a
single parameter. The actual parameter Item must be of predefined type string.
Any leading or trailing spaces in the string X are ign~ored. In the case where an
illegal string is passed, a Constraint-Error is raised.

Parameter descriptions:

Examples:

Suppose the following typv eedcae

type X is (red, green, blue, purple);

Then the following would be true

X'Extended Value("red") - red
X'Extended-Value(' green") . green

22NOTE-1737AIVA\.E6 04J.N9I

VAX-E68 LRM Appendix F Information

X'ExtendedValue(" Purple") - purple
X'Extended Value(" GreEn ") - green

'Extended Width

Usa2e:

X'Extended Width

Returns the width for subtype of X.

For a prefix X that is a discrete type or subtype, this attribute is a function. This
attribute yields the maximum image length over all values of the enumeration type
or subtype X.

Parameter descriptions:

There are no parameters to this function. This function returns the width of the
largest (width) enumeration literal in the enumeration type specified by X.

Examples:

Suppose the following types were declared

type X is (red, green, blue, purple);
type Z is (Xl, X12, X123, X1234);

Then the following would be true

X'ExtendedWidth - 6 - "purple"
Z'Extended Width - 5 -'X1234"

NOTL.-1137.\l.I,\X.E68) IWJAN91

TeleGen2 for VAX-E68

2.2.3. Floating point attributes

'Extended Image

Usae:

X'Extended_Image(Item,Fore.Aft,Exp,Base,Based)

Returns the image associated with Item as defined in Text _O.Float 1O. The
Text 10 definition states that it outputs the value of the parameter Item as a
decimal literal with the format defined by the other parameters. If the value is
negative, a minus sign is included in the integer part of the value of Item. If Exp is
0, the integer part of the output has as many digits as are needed to represent the
integer part of the value of Item or is zero if the value of Item has no integer part.
(LRM 14.3.8:13, 14.3.8:15)

Item must be a Real value. The resulting string is without underlines or trailing
spaces.

Parameter descriptions:

Item The item for which you want the image; it is passed to the
function. Required

Fore The minimum number of characters for the integer part of the
decimal representation in the return string. This includes a
minus sign if the value is negative and the base with the ?#' if
based notation is specified. If the integ irt to be output has
fewer characters than specified by Fore, Lcading spaces are
output first to make up the difference. If no Fore is specified.
the default value (2) is assumed. Optional

Aft The minimum number of decimal digits after the decimal
point to accommodate the precision desired. If the delta of
the type or subtype is greater than 0.1. then Aft is 1. If no Aft
is specified, the default (X'Digits-1) is assumed. If based nota-
tion is specified, the trailing "#" is included in Aft. Optional

Exp The minimum number of digits in the exponent. The exponent
consists of a sign and the exponent. possibly with leading
zeros. If no Exp is specified. the default (3) is assumed. If
Exp is 0, no exponent is used. Optional

Base The base that the image is to be displayed in. If no base is
specified. the default (10) is assumed. Optional

Based An indication of whether vou want the string returned to be in
based notation or not. If no preference is specified, the de-
fault (false) is assumed. Opnonal

24 ",, ()TE- I 3XI .IV(\.E6Th) 04JA% 1

VAX-E68 LRM Append-x F Information

Examples:

Suppose the following type were declared

type X is digits 5 range -10.0 .. 16.0;

Then the following would be true

X'ExtendedImage(5.0) - " 5.OOOOE+00"
X'ExtendedImage(5.0,1) - "5.OOOOE+00"
X'ExtendedImage(-5.0,1) - "-5.OOOOE+00"
X'ExtendedImage(5.0,2,0) " 5.OE+00"
X'ExtendedImage(5.0,2,0,0) -" 5.0"
X'ExtendedImage(5.0,2,0,0,2) - "101.0"
X'ExtendedImage(5.0,2,0,0,2,True) "2#1101.0#"
X'Extended Image(5.0,2,2,3,2,True) - "2#1.1#E+02"

'Extended Value

Usage:

X'ExtendedValue(Item)

Returns the value associated with Item as defined in Text IO.Float 10. The
Text_10 definition states that it skips any leading zeros, then reads a plus or
minus sign'if present then reads the string according to the syntax of a real literal.
The return value is that which corresponds to the sequence input. (LRM 14.3.8:9.
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute is a function with a
single parameter. The actual parameter Item must be of predefined type string.
Any leading or trailing spaces in the string X are ignored. In the case where an
illegal string is passed. a ConstraintError is raised.

Parameter descriptions:

Item A parameter of the predefined type string; it is passed to the
function. The n'pe of the returned value is the base type of the
input string. Required

Examples:

Suppose the following type were declared

type X is digits 5 range -10.0 .. 16.0;

Then the foUowing would be true

X'ExtendedValue("5.0") - 5 0

%,OTE.173'-\ I.IC \-X.E68M 04J-.V,91 .

TeleGen2 for VAX-E68

X'ExtendedValue("0.5El") - 5.0
X'ExtendedValue("2#1.01#E2") = 5.0

'Extended-Digits

Usae:

X'ExtendedDigits(Base)

Returns the numoer of digits using base in the mantissa of model numbers of the
subtype X.

Parameter descriptions:

Base The base that the subtype is defined n.If no base is specifiled,
Sthe default (10) is assumed. Optional

Examples:

Suppose the following type were declared

type X is digits 5 range -10.0 .. 16.0;

Then the following would be true

X'ExtendedDigits - 5

2.2.4. Fixed-point attributes

'ExtendedImage

Usage:

X' ExtendedImage(ItemFore ,Aft Exp,Base, Based)

Returns the image associated with Item as defined in Text lO.Fixed 10. The
Text 10 definition states that it outputs the value of the parameter Item as a
decimal literal with the format defined by the other parameters. If the value is
negative, a minus sign is included in the integer part of the value of Item. If Exp is
0, the integer part of the output has as many digits as are needed to represent the
integer part of the value of Item or is zero if the value of Item has no integer part.
(LRM 14.3.8.13. 14.3.8:15)

For a prefix X that is a discrete type or subtype this attribute is a function that

may have more than one parameter. The parameter Item must be a Real value.
The resulting string is without underlines or trailing spaces.

26 NOTE.1737.\I.NVX.E6x) I)JAN91

VAY-E68 LRM Appendix F Information

Parameter descriptions:

Item The item for which you want the image; it is passed to the
function. Required

Fore The minimum number of characters for the integer part of the
decimal representation in the return string. This includes a
minus sign if the value is negative and the base with the '#' if
based notation is specified. If the integer part to be output has
fewer characters than specified by Fore, leading spaces are
output first to make up the difference. If no Fore is specified.
the default value (2) is assumed. Optional

Aft The minimum number of decimal digits after the decimal
point to accommodate the precision desired. If the delta of
the type or subtype is greater than 0.1, then Aft is 1. If no Aft
is specified, the default (X'Digits-1) is assumed. If based no-
tation is specified, the trailing '#' is included in Aft. Optional

Exp The minimum number of digits in the exponent; the exponent
consists of a sign and the exponent, possibly with leading
zeros. If no Exp is specified, the default (3) is assumed. If
Exp is 0, no exponent is used. Opn'onal

Base The base in which the image is to be displayed. If no base is
specified, the default (10) is assumed. Optional

Based An indication of whether you want the string returned to be in
based notation or not. If no preference is specified, the de-
fault (false) is assumed. Optional

NOTE-1737-VI.I (\'AX.E68 I)4JN91 2"

TeleGen2 for VAX-E68

Examples:

Suppose the following r~pe were declared

type X is delta 0.1 range -10.0 .. 17.0;

Then the falowing would be true

X'ExtendedImage(5.0) - " 5.OOE+00"
X'ExtendedImage(5.0,1) - "5.OOE+00"
X'ExtendedImageC-5.0,1) - "-5.OOE+00"
X'ExtendedImage(5.0,2,0) - " 5.0E+00"
X'Extended_1mage(5.0,2,0,0) - " 5.0",
X'ExtendedImage(5.0,2 .0,0,2) - "1101.0"1
X'ExtendedlImage(5. 0.2,0,0,2 ,True) - 112#101.0#1"
X'ExtendedImage(5.0,2,2,3,2,True) - "211# lE+02"1

'ExtendedValue

Usage:

X'ExtendedValue(lmage)

Returns the value associated with Item as defined in Text I0.Fixed 10. The
Text_10 definition states that it skips any leading zeros, reads a plus or minus sign
if present, then reads the string according to the syntax of a real l-iteral. The
return value is that which corresponds to the sequence input. (LRM 14.3.8:9,
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute is a function with a
single parameter. The actual parameter Item must be of predefined type string.
Any leading or trailing spaces in the string X are ignored. In the case where an
illegal string is passed, a Constraint-Error is raised.

Parameter descriptions:

Image Parameter of the predefined typ stig. h yeo he

turned value is the base type of the input string. Required

Examples:

Suppose the foUowing tyewredcad

type X is delta 0.1 range -10.0 . 17.0;

Then the following would be true

X'Excerded Value('5.0") =5.0

X'Exterided Value("0.5E1') -5.0

28~ NOTE-1737.N1. A\E68X IW4JA3N91

VAX-E68 LRM Appendix F Information

X'Extended_Value("2 1.0l#E2") = 5 0

'Extended Fore

L'sage:

X'ExtendedFore(Base,Based)

R1eturns the minimum number of characters required for the integer part of the
based representation of X.

Parameter descriptions:

Base The base in which the subtype is to be displayed, If no base is
specified, the default (10) is assumed. Optional

Based An indication of whether you want the string returned to be in
based notation or not. If no preference is specified, the de-
fault (false) is assumed. Optional

Examples:

Suppose the following type were declared

type X is delta 0.1 range -10.0 .. 17.1;

Then the following would be true

X'ExtendedFore - 3 -- "-10"
X'Extended Fore(2) - 6 -- " 10001"

'Extended Aft

Usage:

X'Extended Aft(Base,Based)

Returns the minimum number of characters required for the fractional part of the
based representation of X.

N0TE-1737.\I . \ X.EMW 04JAN91 '9

TeIeGen'. for VAX-E68

Parameter descriptions:

Base~~~ ~~ Th baei hc h utpe is to be displayed. If no base is
specified, the default (10) is assumed. Optional

Based An indication of whether you want the string returned to be in
based notation or not. If no preference is specified, the de-
fault (false) is assumed. Optional

Examples:

Suppose the following type were declared

type X is delta 0.1 range -10.0 . . 17.1;

Then the following would be tru(e

X'ExtendedAft = 1 -- "Ifrom 0. 1
X'E-xtended_Aft(2) - 4 - "0001" from 2#0.0001#

34) NOTE-1737-N1I\A.E68i 04JAN91

VAX-E68 LRM Appendix F Information

3. Package System

The current specification of package System is provided by the following.

with Unchecked-Conversion;

package System is

-- CUSTOMIZABLE VALUES

type Name is (TeleGen2);

System-Name constant name :- TeleGen2;

Memory_Size constant (2 ** 31) -1; --Available memory, in storage units
Tick constant 1.0 / 100.0; --Basic clock rate, in seconds

type Task Data is --

record -- Adaptation-specific customization information
null; -- for task objects.

end record; --

-- NON-CUSTOMIZABLE, IMPLEMENTATION-DEPENDENT VALUES

StorageUnit constant : 8;
Min Int constant : -(2 *- 31);
Max Int constant : (2 ** 31) - 1;
Max Digits constant : 15;
Max Mantissa constant : 31,
FineDelta constant : 1.0 / (2 ** Max-Mantissa);

subtype Priority is Integer Range 0 .. 63;

-- ADDRESS TYPE SUPPORT

type Memory is private;
type Address is access Memory;

-- Ensures compatibility between addresses and access types.
-- Also provides implicit NULL initial value.

NOTE-I737-VI.I1V'AX.E6X) 04JAN91

TeIeGen2 for VAX-E68

Null Address: constant Address :- null;

-- Initial value for any Address object

type AddressValue is range -(2**3l)..(2**3l)-l;

-- A numeric representation of logical addresses for use in address clauses

Hex 80000000 constant Address Value :- - 16#80000000#;
Hex 90000000 : constant AddressValue :- - 16#70000000#;
Hex AOOOOOOO constant Address Value :- - 16#60000000#;
Hex BOOOOOOO : constant Address Value :- - 16#50000000#;
Hex COOOOOOO : constant Address Value :- - 16#40000000#;
Hex DOOOOOOO : constant Address Value :- - 16#30000000#;
Hex E0000000 constant Address Value := - 16#20000000#;
Hex FOOOOOOO : constant Address Value :- - 16#10000000#;

-- Define numeric offsets to aid in Address calculations
-- Example:
-- for Hardware use at Location (HexFOOOOOOO + 16#2345678#);

function Location is new Unchecked Conversion (Address Value, Address);

-- May be used in address clauses:

-- Object: Some Type;
-- for Object use at Location (16#4000#);

function Label (Name: String) return Address;
pragma Interface (META, Label);

-- The LABEL meta-function allows a link name to be specified as address
-- for an imported object in an address clause:

-- Object: SomeType;
-- for Object use at Label("OBJECT$$LINK_NAME");

-- System.Label returns NullAddress for non-literal parameters.

-- ERROR REPORTING SUPPORT

procedure ReportError;

pragma Interface (Assembly, Report-Error);
pragma InterfaceInformation (ReportError, "REPORT ERROR");

32 %(TE-1737-VI1.i1\ AX.E68) 04JAN91

VAX-E68 LRM Appendix F Information

-- Report_Error can only be called in an exception handler and provides
- - an exception traceback like tracebacks provided for unhandled
- - exceptions

-- CALL SUPPORT

type Subprogram-Value IS
record

Proc addr Address;

Parent frame Address;

end record;

-- Value returned by the implementation-defined 'Subprogram Value

-- attribute. The attribute is not defined for subprograms with
-- parameters, or functions.

private
type Memory is
record
null;

end record;

end System;

3.1. System.Label

The System.Label meta-function is provided to allow users to address objects by a
linker-recognized label name. This function takes a single string literal as a
parameter and returns a value of System.Address. The function simply returns
the run-time address of the appropriate resolved link name. the primary purpose
being to address objects created and referenced from other languages.

" When used in an address clause, System. Label indicates that the Ada
object or subprogram is to be referenced by a label name. The actual
and this capability simply allows the user to import that object and
reference it in Ada.

" When used in an expression, System.Label provides the link time
address of any name; a name that might be for an object, a subprogram.
etc.

NOTE. I737.VI. 1 V-X.E68) IWJ3%N91

TeIeGen2 for VAX-E68

3.2. System.Report_Error

Report Error must only be called from within an exception handler, and must be
the first thing done within it. This routine displays the normal exception traceback
information to standard output. It is essentially the same traceback that could be
obtained if the exception were unhandled and propagated out of the program. but
the user may want to handle the exception and still display this information. The
user may also want to use this capability in a user handler at the end of a task
(since those exceptions will not be propagated to the main program). Note that
the user can also get this capability for all tasks using the
/SHOWTASKEXCEPTIONS binder qualifier.

34 NOTE-1737-Vi.iV X.E68) !4J-N91

